
Futureproofing Software
with

Clean Architecture

Dmitry Sagatelyan

Certified LabVIEW Architect
LabVIEW Champion

sagatedm@arkturtech.com

Arktur Technologies LLC AustinCLA Summit 2019

mailto:sagatedm@arkturtech.com

Abstract

2Futureproofing Software with Clean Architecture

“Clean Architecture” is the latest (2017) book penned by Robert C. Martin (AKA
Uncle Bob). It takes us beyond SOLID Design Principles and Package Design
Principles into the realm of Policies, Business Rules, Layers, Architectural
Boundaries and The Dependency Rule: “Source Code Dependencies must point
only toward higher-level Policies”.
It provides much needed guidance on building applications that can withstand
requirement changes at incremental cost (AKA Software Futureproofing). It
shows that Frameworks, Operating Systems, Data Bases and User Interfaces
(including “The Web”) are details – and, as such, should be decoupled from code
implementing high-level Policies and Business Rules. It is not possible providing a
helpful “Clean Architecture” review in a single presentation. Instead, I will try
making a case for investing time and effort in digesting it by going over top-level
ideas and several unorthodox conclusions.

CLA Summit 2019, Austin

• Software Engineer by Training
• Master of Science in Computer Science
• Using LabVIEW since 1998 (LV 5.0)
• Certified LabVIEW Architect (2012 – 2026)
• LabVIEW Champion
• Passionate about:

• Using Contemporary SW Engineering Methods in LabVIEW (ex: SOLID Principles)
• Actor Programming

• Regular presenter @ NIWeek, CLA Summits, Bay Area LUG
• Designed several Actor Frameworks (2005/07/11/15)
• Designed ArTLib – a first (?) LabVIEW Reuse Library built on SOLID Principles (2011-19)
• Full Time LabVIEW Consultant in San Francisco Bay Area (Arktur Technologies LLC)
• Presentation List

About Myself …

CLA Summit 2019, Austin 3Futureproofing Software with Clean Architecture

Presenter
Presentation Notes
Coming from Computer Science and Software Engineering background I am passionate about bringing Contemporary Software Engineering Methods and Practices to the LabVIEW Community. My main areas of interest include Actor Programming and using Agile Software Design Principles (including SOLID Principles) for developing better (more scalable and leaner) LabVIEW architectures and code. Both areas are critical in enabling Large Application Development in LabVIEW. I am a regular presenter at the NIWeek, CLA Summits and Bay Area LabVIEW User Group.

After graduating from college I joined General Physics Institute (Moscow) and had been working for nearly 20 years on a broad range of Measurement, Control and Data Analysis Systems – from advanced breadboards for fundamental research in Physics to air traffic monitoring system prototype.

In 1986 I established and chaired a Special Interest Group on Programming Language Modula-2, bringing together a group of ~200 engineers and scientist actively looking for a better programming language and development environment. This was a great opportunity to learn from the works of Niklaus Wirth – shaping my software engineering mindset for the years to come.

After moving to San Francisco Bay Area I joined Applied Biosystems world-class R&D organization – using LabVIEW to improve and support a line of capillary DNA Sequencers and working on next generation of DNA Sequencing technologies. This was an exciting time of breakthroughs – leading to a drop in Human Genome sequencing cost from $50,000,000 in 2003 to under $10,000 in 2009.

In 2009 I started Arktur Technologies with the goal of applying contemporary software engineering methods to design of measurement, control and data analysis systems in LabVIEW. I am quite happy with the outcome - using SOLID Design Principles for nearly 9 years resulted in lean and scalable LabVIEW applications capable of adapting to requirements changes at incremental cost. Being a LabVIEW Consultant I can help others to master SOLID Design faster and with less pain.

https://forums.ni.com/t5/LabVIEW-Champions-Directory/LabVIEW-Champion-Dmitry-Sagatelyan/ta-p/3536802

The Must Read Books

CLA Summit 2019, Austin 4Futureproofing Software with Clean Architecture

Robert C. Martin
AKA ‘Uncle Bob’

2003 20172017

• Focused on SOLID and Package Design
Principles (Module and Component Levels)

• Hard to Read: Plenty of Examples in C++
• Hard to Digest: Novel Concepts, Dense

Content
• May be read by Topic

• Focused at the Architectural Level
• Requires prior understanding of SOLID and

Package Design Principles
• Easy to Read: No C++ Examples
• Hard to Digest: May seem too generic to be

useful – hard to extract actionable items
• Must read entire book

Presenter
Presentation Notes
Why invest time in reading/digesting “Clean Architecture” ?

Quite hard to extract actionable items from Clean Architecture text. See examples at the end of presentation …

https://www.amazon.com/Clean-Architecture-Craftsmans-Software-Structure/dp/0134494164/ref=sr_1_1?s=books&ie=UTF8&qid=1525207646&sr=1-1&keywords=Clean+Architecture

Clean Architecture : Select Quotes

CLA Summit 2019, Austin 5Futureproofing Software with Clean Architecture

“Have you experienced the impedance of bad code and rotten design?”, p.2

“The word ‘architecture’ conjures visions of power and mystery”, p.136

“When we think of a software architect, we think of someone who has power, and who
commands respect”, p.136

“The dilemma for software developers is that business managers are not equipped to evaluate
the importance of architecture. That’s what software developers were hired to do. Therefore,
it is the responsibility of the software development team to assert the importance of
architecture over the urgency of features”, p.17

“This was a startup. We worked 70 to 80 hours per week. We had the vision. We had the
motivation. We had the will. We had the energy. We had the expertise. We had equity. We
had dreams of being millionaires. We were full of shit”, p.365

Signature of a Mess

CLA Summit 2019, Austin 6Futureproofing Software with Clean Architecture

Tel: +44 208 715 2645,
jason.gorman@codemanship.com,
www.codemanship.com
Codemanship Ltd 2011

The cost of not having a
proper Software
Architecture in place …

Presenter
Presentation Notes
A successful commercial application shows a decreasing rate of size growth – perhaps it already has all the features that make its users uber happy …
An exponential increase in Engineering Staff headcount might suggest that company success is driving investments in related products lines …
However, all the money is being spent on major releases of the single successful application – telling that development effort has ground to a halt …
This is the cost of not having a proper Software Architecture in place …

Future-Proofing

CLA Summit 2019, Austin 7Futureproofing Software with Clean Architecture

“Future-proofing is the process of anticipating the future and developing methods
of minimizing the effects of shocks and stresses of future events”
Wikipedia

Observation 1:
“We live in a world of changing requirements …”
Observation 2:
“Requirements change in ways that the initial design did not anticipate”
Goal:
“… make sure that our software can survive those changes”

[2] R.Martin, pp. 92 & 89

Presenter
Presentation Notes
It appears that Agile Design Principles and The Clean Architecture are a major strategy for future-proofing Software Systems

https://en.wikipedia.org/wiki/Future_proof

Software Values to Stakeholders

CLA Summit 2019, Austin 8Futureproofing Software with Clean Architecture

“Every software system provides two different values to the stakeholders:
behavior and structure”, p.14

• Behavior is defined by Requirements
• Structure supports implementing Requirements
• But Structure has very little effect on the Behavior
• Instead, Structure determines the cost of implementing and

maintaining the system
• A system with bad Structure might work well, but would be very

expensive to maintain
• This Software System Structure is typically referred to as Architecture

Presenter
Presentation Notes
System Behavior is defined by Customer Requirements. System Architecture is not …

“Every software system provides two different values to the stakeholders: behavior and structure. Software developers are responsible for ensuring that both those values remain high”, p.14

“The first value of software is its behavior. Programmers are hired to make machines behave in a way that makes or saves money for the stakeholders. We do this by helping the stakeholders develop a functional specification, or requirements document. Then we write the code that causes the stakeholder’s machines to satisfy those requirements.
When the machine violates those requirements, programmers get their debuggers out and fix the problem. Many programmers believe that is the entirety of their job. They believe their job is to make the machine implement the requirements and to fix any bugs. They are sadly mistaken.”, p.14

“The second value of software has to do with the word “software” … Software was invented to be “soft”. It was intended to be a way to easily change the behavior of machines. To fulfill its purpose, … it must be easy to change. When the stakeholders change their minds about a feature, that change should be simple and easy to make. The difficulty in making such a change should be proportional only to the scope of the change, and not to the shape of the change. It is this difference between scope and shape that often drives the growth in software development costs. It is the reason that costs grow out of proportion to the size of the requested changes. It is the reason that the first year of development is much cheaper than the second, and the second year is much cheaper than the third.”, p.14

“Each new request is harder to fit than the last, because the shape of the system does not match the shape of the request … Therefore, architectures should be as shape agnostic as practical., p.15

“there are systems that are practically impossible to change, because the cost of change exceeds the benefit of change. Many systems reach that point in some of their features or configurations.”, p.15

“Just remember: If architecture comes last, then the system will become ever more costly to develop, and eventually change will become practically impossible for part or all of the system. If that is allowed to happen, it means the software development team did not fight hard enough for what they knew was necessary.”, p.18

What IS Software Architecture ?

CLA Summit 2019, Austin 9Futureproofing Software with Clean Architecture

Architecture represents the significant design decisions that shape a system,
where significant is measured by cost of change.

—Grady Booch

The architecture of a software system is the shape given to that system by those
who build it … The purpose of that shape is to facilitate the development,
deployment, operation, and maintenance of the software system contained
within it.

—Uncle Bob

Architecture is about the important stuff. Whatever that is.
—Martin Fowler

Presenter
Presentation Notes
Software Architecture is a vague notion. I am not aware of a single definition broadly accepted by the Software Community …

Architecture represents the significant design decisions that shape a system, where significant is measured by cost of change.
—Grady Booch

“The architecture of a software system is the shape given to that system by those who build it. The form of that shape is in the division of that system into components, the arrangement of those components, and the ways in which those components communicate with each other. The purpose of that shape is to facilitate the development, deployment, operation, and maintenance of the software system contained within it.”
—Uncle Bob, p.136

Architecture is the decisions that you wish you could get right early in a project, but that you are not necessarily more likely to get them right than any other.
—Ralph Johnson

If you think good architecture is expensive, try bad architecture.
—Brian Foote and Joseph Yoder

Goal of Software Architecture

CLA Summit 2019, Austin 10Futureproofing Software with Clean Architecture

“The goal of software architecture is to minimize the human resources
required to build and maintain the required system.”, p.5

“ … the architecture of a system has very little bearing on whether that
system works. There are many systems out there, with terrible
architectures, that work just fine. Their troubles … occur in deployment,
maintenance, and ongoing development.”, p.136

“The way you keep software soft is to leave as many options open as
possible, for as long as possible. What are the options that we need to leave
open? They are the details that don’t matter.”, p.140

If you think good architecture is expensive, try bad architecture.
—Brian Foote and Joseph Yoder

Presenter
Presentation Notes
“The primary purpose of architecture is to support the life cycle of the system. Good architecture makes the system easy to understand, easy to develop, easy to maintain, and easy to deploy. The ultimate goal is to minimize the lifetime cost of the system and to maximize programmer productivity.”, p137

“However, the architecture of a system has very little bearing on whether that system works. There are many systems out there, with terrible architectures, that work just fine. Their troubles do not lie in their operation; rather, they occur in their deployment, maintenance, and ongoing development.”, p.136

“The way you keep software soft is to leave as many options open as possible, for as long as possible. What are the options that we need to leave open? They are the details that don’t matter.”, p.140

If you think good architecture is expensive, try bad architecture.
—Brian Foote and Joseph Yoder

What Makes a Software Architect ?

CLA Summit 2019, Austin 11Futureproofing Software with Clean Architecture

• Is a Tech Lead
• Works with Marketing, Management

and Customers
• Contributes code (eats own dogfood)
• Scope: Entire Software System

• Makes all important decisions
early on (for others to work on)

• Walks on water
• Risks becoming an architectural

bottleneck

• Makes system-wide decisions (ex:
draws architectural boundaries)

• Finds Solutions (looks out for and
resolves important system issues)

• Mentors and Guides Development Team
• Delegates decision making to qualified

developers
Who Needs an Architect ?

Martin Fowler

Presenter
Presentation Notes
I tend to be on the left side of the spectrum in my consulting capacity. But had been involved in substantial mentoring effort as a full-time employee in the past. One’s position may be affected by a number of factors including:
Project priorities & schedule
Skill/experience gap between architect and the development team
Architect’s personality

“Delegating decisions” often involves letting developers make mistakes, as people learn better/faster from such experiences. However, it is the architect’s responsibility to ensure such mistakes do not jeopardize project quality and delivery schedule …

“An architect’s value is reverse proportional to the number of decisions he makes …”, from Martin Fowler

“Software architects are, by virtue of their job description, more focused on the structure of the system than on its features and functions. Architects create an architecture that allows those features and functions to be easily developed, easily modified, and easily extended.”, p.18

“Just remember: If architecture comes last, then the system will become ever more costly to develop, and eventually change will become practically impossible for part or all of the system. If that is allowed to happen, it means the software development team did not fight hard enough for what they knew was necessary.”, p.18

“The goal of the architect is to create a shape for the system that recognizes policy as the most essential element of the system while making the details irrelevant to that policy. This allows decisions about those details to be delayed and deferred.”, p.140

“If you can develop the high-level policy without committing to the details that surround it, you can delay and defer decisions about those details for a long time. And the longer you wait to make those decisions, the more information you have with which to make them properly”, p.141

“A good architect pretends that the decision has not been made, and shapes the system such that those decisions can still be deferred or changed for as long as possible.”, p.141

“The way you keep software soft is to leave as many options open as possible, for as long as possible. What are the options that we need to leave open? They are the details that don’t matter.”, p.140

“It is one of the functions of an architect to decide where an architectural boundary might one day exist, and whether to fully or partially implement that boundary.”, p.220

“We, as architects, must be careful to recognize when they are needed. We also have to be aware that such boundaries, when fully implemented, are expensive. At the same time, we have to recognize that when such boundaries are ignored, they are very expensive to add in later … since over-engineering is often much worse than under-engineering. On the other hand, when you discover that you truly do need an architectural boundary where none exists, the costs and risks can be very high to add such a boundary. Your goal is to implement the boundaries right at the inflection point where the cost of implementing becomes less than the cost of ignoring.”, p.229

https://www.martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf

Agile Software Design: The Big Picture

1. Agile Design Philosophy
2. The Dependency Rule
3. Package Design Principles
4. SOLID Principles
5. Design Patterns
6. Code

Futureproofing Software with Clean ArchitectureCLA Summit 2019, Austin 12
Pr

og
ra

m
m

in
g

La
ng

ua
ge

-
Ag

no
st

ic

Presenter
Presentation Notes
Legal Disclaimer: This slide is my personal view of the subject. Consume at your own risk …

Dependency Rule is applied at the Architectural Level
Package Design Principles are applied at Component Level (Component is a set of cohesive Modules)
SOLID Principles are applied at Module Level (Module is a class (.lvclass) or a library (.lvlib))

Agile Software Design Philosophy

CLA Summit 2019, Austin 13Futureproofing Software with Clean Architecture

Translation:
• Make your code as good as it needs to be at the moment
• Refractor it as requirements change

Refactoring comes at incremental cost when code is designed with Agile Software Design
Principles in mind …

Agile Philosophy = Continuous Refactoring

“We live in a world of changing requirements …”
“Requirements change in ways that the initial design did not anticipate”
“… make sure that our software can survive those changes”

[2] R.Martin, pp. 92 & 89

Presenter
Presentation Notes
Slide Notes

SOLID Principles

SRP The Single Responsibility Principle
OCP The Open-Closed Principle
LSP The Liskov Substitution Principle
ISP The Interface Segregation Principle
DIP The Dependency Inversion Principle

14Futureproofing Software with Clean ArchitectureCLA Summit 2019, Austin

Applied at Module Level
(.lvclass & .lvlib)

Package Design Principles

REP The Reuse-Release Equivalency Principle
ADP The Acyclic Dependency Principle
CCP The Common Closure Principle

CRP The Common Reuse Principle
SDP The Stable Dependencies Principle
SAP The Stable Abstraction Principle

Applied at Component Level
(VIPM & NIPM Packages, PPLs)Component

Class

Presenter
Presentation Notes
In LabVIEW :

Module 	- a Class or a Library	(unit of Functionality)
Component	- a set of related Modules	(unit of Distribution/Deployment)

Agile Principles are guidelines – consciously breaking them for a good reason is OK. It does not take much to abuse them either … SW Design is as much art as science after all …

Package Design Principles are not critical for general LabVIEW Development. But they come handy when designing Packages, PPLs or other units of distribution/deployment …

The Clean Architecture

CLA Summit 2019, Austin 15Futureproofing Software with Clean Architecture

The Dependency Rule:
Source code dependencies must
point only inward, toward higher-
level policies

Clean Systems are:
• Independent of Frameworks
• Independent of the UI
• Independent of the Database
• Testable

Goal: to leave as many options
open as possible, for as long as
possible

Presenter
Presentation Notes
“The overriding rule that makes this architecture work is the Dependency Rule:
Source code dependencies must point only inward, toward higher-level policies.
Nothing in an inner circle can know anything at all about something in an outer circle.”, p.203

“Entities encapsulate enterprise-wide Critical Business Rules.
The software in the use cases layer contains application-specific business rules
The software in the interface adapters layer is a set of adapters that convert data from the format most convenient for the use cases and entities, to the format most convenient for some external agency such as the database or the web.
The frameworks and drivers layer is where all the details go. The web is a detail. The database is a detail. We keep these things on the outside where they can do little harm.”, pp.204-205

“By separating the software into layers and conforming to the Dependency Rule, you will create a system that is intrinsically testable, with all the benefits that implies.”, p.209

“Each of these architectures produces systems that have the following characteristics:
• Independent of frameworks. The architecture does not depend on the existence of some library of feature-laden software. This allows you to use such frameworks as tools, rather than forcing you to cram your system into their limited constraints.
• Testable. The business rules can be tested without the UI, database, web server, or any other external element.
• Independent of the UI. The UI can change easily, without changing the rest of the system. A web UI could be replaced with a console UI, for example, without changing the business rules.
• Independent of the database. You can swap out Oracle or SQL Server for Mongo, BigTable, CouchDB, or something else. Your business rules are not bound to the database.
• Independent of any external agency. In fact, your business rules don’t know anything at all about the interfaces to the outside world.
”, p.202

“Which kinds of decisions are premature? Decisions that have nothing to do with the business requirements—the use cases—of the system. These include decisions about frameworks, databases, web servers, utility libraries, dependency injection, and the like. A good system architecture is one in which decisions like these are rendered ancillary and deferrable. … A good system architecture allows those decisions to be made at the latest possible moment, without significant impact.”’ p.161

“The way you keep software soft is to leave as many options open as possible, for as long as possible. What are the options that we need to leave open? They are the details that don’t matter.”, p.140

Architectural Boundaries

CLA Summit 2019, Austin 16Futureproofing Software with Clean Architecture

Flow of Control

Boundary

Code Dependency

Boundary crossing @ runtime:
• A VI/method call
• Sending Message
• Triggering Event
• Use simple data structures or

objects for passing data

The Dependency Rule:
Source code dependencies must
point only inward, toward higher-
level policies

Presenter
Presentation Notes
Crossing Boundary at runtime is done by directly calling a VI from the other side or sending a message
User actions originate at the Input Level
Input Event is passed to Controller
Controller calls Use Case Interactor
Use Case Interactor fetches/stores data to Database and calls into Entity Level
Results are propagated back to Presenter via a direct call or a message
Presenter updates the “View” data structure and passes it to the Humble View Object
View Object renders update on the output device (a display in most cases)
Crossing the boundary in direction of code dependencies is easy (direct calls)
Crossing the boundary in reverse direction requires an Interface to prevent unwanted code coupling

“Software architecture is the art of drawing lines that I call boundaries … that are drawn early for the purposes of deferring decisions for as long as possible, and of keeping those decisions from polluting the core business logic”, p.160

“You draw lines between things that matter and things that don’t.”, p.165

“Recall that the goal of an architect is to minimize the human resources required to build and maintain the required system. What it is that saps this kind of peoplepower? Coupling—and especially coupling to premature decisions.”, p.161

“Boundaries are drawn where there is an axis of change. The components on one side of the boundary change at different rates, and for different reasons, than the components on the other side of the boundary.”, p.173

“At runtime, a boundary crossing is nothing more than a function on one side of the boundary calling a function on the other side and passing along some data.”, p.176

“The SRP tells us where to draw our boundaries. To draw boundary lines in a software architecture, you first partition the system into components. Some of those components are core business rules; others are plugins that contain necessary functions that are not directly related to the core business. Then you arrange the code in those components such that the arrows between them point in one direction—toward the core business.
You should recognize this as an application of the Dependency Inversion Principle and the Stable Abstractions Principle. Dependency arrows are arranged to point from lower-level details to higher-level abstractions.”, p.173

“Which kinds of decisions are premature? Decisions that have nothing to do with the business requirements—the use cases—of the system. These include decisions about frameworks, databases, web servers, utility libraries, dependency injection, and the like. A good system architecture is one in which decisions like these are rendered ancillary and deferrable. … A good system architecture allows those decisions to be made at the latest possible moment, without significant impact.”’ p.161

“Full-fledged architectural boundaries are expensive. They require reciprocal polymorphic Boundary interfaces, Input and Output data structures, and all of the dependency management necessary to isolate the two sides into independently compilable and deployable components. That takes a lot of work. It’s also a lot of work to maintain”, p.218

“The full-fledged architectural boundary uses reciprocal boundary interfaces to maintain isolation in both directions. Maintaining separation in both directions is expensive both in initial setup and in ongoing maintenance.”, p.219

“Without reciprocal interfaces, nothing prevents this kind of backchannel other than the diligence and discipline of the developers and architects.”, p.219

“It is one of the functions of an architect to decide where an architectural boundary might one day exist, and whether to fully or partially implement that boundary.”, p.220

“We, as architects, must be careful to recognize when they are needed. We also have to be aware that such boundaries, when fully implemented, are expensive. At the same time, we have to recognize that when such boundaries are ignored, they are very expensive to add in later …
… since over-engineering is often much worse than under-engineering. On the other hand, when you discover that you truly do need an architectural boundary where none exists, the costs and risks can be very high to add such a boundary.
… Your goal is to implement the boundaries right at the inflection point where the cost of implementing becomes less than the cost of ignoring.”, p.229

How to Cross Boundaries ?

CLA Summit 2019, Austin 17Futureproofing Software with Clean Architecture

Partial (one way) Boundary

Data Access
Interface

Database

Calls

Use Case
Interactor

Data Access
Calls

Implements

Boundary

Flow of Control

Calls

Input Interface

Implements

Boundary

Calls

Use Case
Interactor

Output
Interface

Controller

Presenter

Flow of Control

Implements

Full (two way) Boundary

Calls

Dependency
Inversion Principle
in action !

Presenter
Presentation Notes
Database should never have a need in calling Use Case Interactor – hence the one-way control …
However, Use Case Interactor should not depend on the Database – instead it is calling Data Access class through a Data Access Interface, which, in turn is implemented by Data Access Class …

Controller/Presenter constitute a two-way boundary crossing.
Controller may call Use Case Interactor directly. However, this would create a hard dependency on the latter.
We should decouple Use Case Interactor from Controller via Input Interface in case we might need reusing Controller/Presenter classes with different Interactors. Controller/Presenter typically contain a large amount of code with non-trivial business logic – making such a decision a practical option ..

“At runtime, a boundary crossing is nothing more than a function on one side of the boundary calling a function on the other side and passing along some data.”, p.176

“when we pass data across a boundary, it is always in the form that is most convenient for the inner circle.”, p.207

“Note that the data flows and the source code dependencies do not always point in the same direction. This, again, is part of the art of software architecture. We want source code dependencies to be decoupled from data flow and coupled to level.”, p.187

Policy and Details

CLA Summit 2019, Austin 18Futureproofing Software with Clean Architecture

• Policy embodies all business rules and procedures of the
System

• Policy constitutes true value of the Software System

• Details enable humans and other systems to communicate
with Policy.

• Details do not impact behavior of the Policy
• Details include IO devices, Databases, Web Systems, Servers,

Frameworks, Communication Protocols, etc.

• Architects goal is to clearly separate Policy from Details

Presenter
Presentation Notes

“All software systems can be decomposed into two major elements: policy and details. The policy element embodies all the business rules and procedures. The policy is where the true value of the system lives.
The details are those things that are necessary to enable humans, other systems, and programmers to communicate with the policy, but that do not impact the behavior of the policy at all. They include IO devices, databases, web systems, servers, frameworks, communication protocols, and so forth.
The goal of the architect is to create a shape for the system that recognizes policy as the most essential element of the system while making the details irrelevant to that policy. This allows decisions about those details to be delayed and deferred.”, p.140

“Part of the art of developing a software architecture is carefully separating those policies from one another, and regrouping them based on the ways that they change”, p. 184

“The art of architecture often involves forming the regrouped components into a directed acyclic graph. The nodes of the graph are the components that contain policies at the same level. The directed edges are the dependencies between those components. They connect components that are at different levels”, p.184

“A strict definition of “level” is “the distance from the inputs and outputs.” The farther a policy is from both the inputs and the outputs of the system, the higher its level. The policies that manage input and output are the lowest-level policies in the system.”, p.184

“Note that the data flows and the source code dependencies do not always point in the same direction. This, again, is part of the art of software architecture. We want source code dependencies to be decoupled from data flow and coupled to level.”, p.187

Business Rules

CLA Summit 2019, Austin 19Futureproofing Software with Clean Architecture

• Business Rules are domain-specific rules and procedures that
make or save the business money

• Critical Business Rules do not require use of a computer -
they may be executed manually as well …

• Entities = Critical Business Rules + Critical Business Data

• Use Cases contain rules that specify how and when Critical
Business Rules are applied within a software system

• Use Cases are application-specific (do not exist outside a
software system)

• Use Cases orchestrate interactions between Users and
Entities

Use Cases

Entities

Example: Tax Preparation Software

• Entities – Federal/State Tax
Forms

• Use Cases – Tax Form Entry
Workflows

Presenter
Presentation Notes
Critical Business Rules may be reused across a range of software systems
Use Cases, on the other hand, are specific to a given software system
Smaller applications may or may not have the Entities layer …

“Strictly speaking, business rules are rules or procedures that make or save the business money. Very strictly speaking, these rules would make or save the business money, irrespective of whether they were implemented on a computer. They would make or save money even if they were executed manually. The fact that a bank charges N% interest for a loan is a business rule that makes the bank money. It doesn’t matter if a computer program calculates the interest, or if a clerk with an abacus calculates the interest.”. p.190

Entity = Critical Business Rules + Critical Business Data

“An Entity is an object within our computer system that embodies a small set of critical business rules operating on Critical Business Data”, p.190

“Use cases contain the rules that specify how and when the Critical Business Rules within the Entities are invoked. Use cases control the dance of the Entities.” , p.190

“Use cases do not describe how the system appears to the user. Instead, they describe the application-specific rules that govern the interaction between the users and the Entities” , p.190

“Architectures are not (or should not be) about frameworks. Architectures should not be supplied by frameworks. Frameworks are tools to be used, not architectures to be conformed to. If your architecture is based on frameworks, then it cannot be based on your use cases.”, p.197

“Which kinds of decisions are premature? Decisions that have nothing to do with the business requirements—the use cases—of the system. These include decisions about frameworks, databases, web servers, utility libraries, dependency injection, and the like. A good system architecture is one in which decisions like these are rendered ancillary and deferrable. … A good system architecture allows those decisions to be made at the latest possible moment, without significant impact.”’ p.161

“The tragedy is that the architects, by making a premature decision, multiplied the development effort enormously”, p.162

Interface Adapters

CLA Summit 2019, Austin 20Futureproofing Software with Clean Architecture

• Clean Architecture is based on MVP Design
• All Controllers/Presenters belong here
• MVC “Views” are split into Presenters & Views
• All Actors, Worker Loops and Message Handlers

should be confined to this level

• Gateways translate data structures generated by
Frameworks to data structures used at the Use
Case Level

• Gateways decouple Use Case Level from interacting
with external Services via protocols

Controllers

Presenter
Presentation Notes
Clean Architecture is based on Model-View-Controller Design
It employs an MVC flavor known as Model-View-Presenter (MVP)
MVC “View” is hard to test (testing GUIs is notoriously hard to automate). MVP splits “View” into a Presenter-View pair where Presenter contains most of functionality and is easy to test, while View is a “thin” object with a sole responsibility of rendering information generated by Presenter.
View is a Humble Object (!!!) It does not belong to Interface Adapters Layer. Its proper place is in the Frameworks and Drivers Layer.

Interface Adapter Layer should host all your Actors, QMHs and Worker Loops and Events/Messages. Neither Entities, nor Use Case Layers should engage in any sort of event handling.

Gateways define mid-level data structures used by Interface Adapter Layer and convert such data into data structures defined by Use Case & Entity Levels. Actual data translation is typically implemented in the Frameworks Layer (see Data Accessor example) – Adapter Layer defines the interface and calls into such Interface implementation plugins when required …

External protocol handling, Client-Server interactions, etc. belong to this layer.

“The software in the interface adapters layer is a set of adapters that convert data from the format most convenient for the use cases and entities, to the format most convenient for some external agency such as the database or the web. It is this layer, for example, that will wholly contain the MVC architecture of a GUI. The presenters, views, and controllers all belong in the interface adapters layer. The models are likely just data structures that are passed from the controllers to the use cases, and then back from the use cases to the presenters and views.
Similarly, data is converted, in this layer, from the form most convenient for entities and use cases, to the form most convenient for whatever persistence framework is being used (i.e., the database). No code inward of this circle should know anything at all about the database. If the database is a SQL database, then all SQL should be restricted to this layer—and in particular to the parts of this layer that have to do with the database.”, p.205-207

“Between the use case interactors and the database are the database gateways. These gateways are polymorphic interfaces that contain methods for every create, read, update, or delete operation that can be performed by the application on the database. For example, if the application needs to know the last names of all the users who logged in yesterday, then the UserGateway interface will have a method named getLastNamesOfUsersWhoLoggedInAfter that takes a Date as its argument and returns a list of last names”, p.214

“The View is the humble object that is hard to test. The code in this object is kept as simple as possible. It moves data into the GUI but does not process that data.
The Presenter is the testable object. Its job is to accept data from the application and format it for presentation so that the View can simply move it to the screen. For example, if the application wants a date displayed in a field, it will hand the Presenter a Date object. The Presenter will then format that data into an appropriate string and place it in a simple data structure called the View Model, where the View can find it.”,p.212

“What about services? If your application must communicate with other services, or if your application provides a set of services, will we find the Humble Object pattern creating a service boundary? Of course! The application will load data into simple data structures and then pass those structures across the boundary to modules that properly format the data and send it to external services. On the input side, the service listeners will receive data from the service interface and format it into a simple data structure that can be used by the application. That data structure is then passed across the service boundary”, p.215

Humble Objects

CLA Summit 2019, Austin 21Futureproofing Software with Clean Architecture

Creates

Presenter

[Humble] View

Uses

View Model

<DS>

The Humble Object Design Pattern separates behaviors that
are hard to test from behaviors that are easy to test

• Presenter contains all [event handling] logic
• Presenter is easy to unit-test

• View is a Humble Object – it renders “View Model” data
structure to an output device (i.e. display) with no
business logic inside

• It is hard to automate testing View, but View is a small
class

Presenter
Presentation Notes
MVC “View” is hard to test (testing GUIs is notoriously hard to automate). MVP splits “View” into a Presenter-View pair where Presenter contains most of functionality and is easy to test, while View is a “thin” object with a sole responsibility of rendering information generated by Presenter.
View is a Humble Object (!!!) It belongs to the Frameworks & Drivers Layer.

“The Humble Object pattern is a design pattern that was originally identified as a way to help unit testers to separate behaviors that are hard to test from behaviors that are easy to test”, p.212

“It has long been known that testability is an attribute of good architectures. The Humble Object pattern is a good example, because the separation of the behaviors into testable and non-testable parts often defines an architectural boundary”, p.213

“The View is the humble object that is hard to test. The code in this object is kept as simple as possible. It moves data into the GUI but does not process that data.
The Presenter is the testable object. Its job is to accept data from the application and format it for presentation so that the View can simply move it to the screen. For example, if the application wants a date displayed in a field, it will hand the Presenter a Date object. The Presenter will then format that data into an appropriate string and place it in a simple data structure called the View Model, where the View can find it.”,p.212

“At each architectural boundary, we are likely to find the Humble Object pattern lurking somewhere nearby. The communication across that boundary will almost always involve some kind of simple data structure, and the boundary will frequently divide something that is hard to test from something that is easy to test. The use of this pattern at architectural boundaries vastly increases the testability of the entire system.”, p.215

Details : Frameworks & Drivers

CLA Summit 2019, Austin 22Futureproofing Software with Clean Architecture

Web

UIDB

External
Interfaces

A good architecture emphasizes the Use Cases
and allows deferring decisions about

• Database (Persistent Data Storage)
• UI (including Web)
• I/O (Devices)
• Frameworks

until much later in the project and makes it easy
to changed your mind about those decisions …

Presenter
Presentation Notes
“If your system architecture is all about the use cases, and if you have kept your frameworks at arm’s length, then you should be able to unit-test all those use cases without any of the frameworks in place”, p.198

“Good architectures are centered on use cases so that architects can safely describe the structures that support those use cases without committing to frameworks, tools, and environments.”, p.198

“A good software architecture allows decisions about frameworks, databases, web servers, and other environmental issues and tools to be deferred and delayed. Frameworks are options to be left open. A good architecture makes it unnecessary to decide on Rails, or Spring, or Hibernate, or Tomcat, or MySQL, until much later in the project. A good architecture makes it easy to change your mind about those decisions, too. A good architecture emphasizes the use cases and decouples them from peripheral concerns.”, p.197

Agile Video Sales App Example

CLA Summit 2019, Austin 23Futureproofing Software with Clean Architecture

Flow of
Control

Code
Dependency

Presenter
Presentation Notes
Uncle Bob’s Video Sale Application:
There are 4 use cases – one per “Actor”. “Actors” are not aware of nor directly interact with other “Actors”
App architecture is made of multiple Components interacting via well defined interfaces
Double lines are the Architectural Boundaries
Background color shows which Architectural Layer the Components belong to
Flow of Control always goes right to left
Code Dependencies always point from outside layers to inside layers (The Dependency Rule)
Each Component may be developed and unit-tested independently
On large applications, a single component may be implemented by one developer or a small development team
On smaller applications Components may be grouped by Use Cases and implemented by a developer or a small team responsible for that Use Case
Use Case Components may be packaged and deployed independent of other Use Case Components

Note:
Each Interactor defines a separate Data Access Interface (Interfaced Segregation Principle)
Data Gateway Component/Class implements all such Interfaces
Example: Application-wide Configuration Handler

Main Component & Tests

CLA Summit 2019, Austin 24Futureproofing Software with Clean Architecture

• “Main.VI” – executes Assembler
workflow

• Assembler Class –creates, configures
and starts all application subsystems;
gracefully stops all subsystems on
application shutdown and releases all
resources

• Unit Tests
• Integration Tests
• Behavioral Tests
• Acceptance Tests
• WTF Tests, etc.

Tests

Web

UIDB

External
Interfaces

Controllers

Use Cases

Entities

Main
Component

Presenter
Presentation Notes
… you can think of the tests as the outermost circle of Clean Architecture

Testability is an attribute of a good Architecture
Tests are [very] strongly coupled to the System
Tests support Development – not Operation
Tests are typically not deployed with the System
Tests that are not well integrated into the design of the system tend to be fragile
“The Tests are part of the System …”

“The tests are part of the system, and they participate in the architecture just like every other part of the system does.”, p.250

“Tests, by their very nature, follow the Dependency Rule; they are very detailed and concrete; and they always depend inward toward the code being tested. In fact, you can think of the tests as the outermost circle in the architecture”, p.250

“The extreme isolation of the tests, combined with the fact that they are not usually deployed, often causes developers to think that tests fall outside of the design of the system. This is a catastrophic point of view. Tests that are not well integrated into the design of the system tend to be fragile, and they make the system rigid and difficult to change.”, p.251

“This situation can become acute. Changes to common system components can cause hundreds, or even thousands, of tests to break. This is known as the Fragile Tests Problem.”, p.252

“The way to accomplish this goal is to create a specific API that the tests can use to verify all the business rules.”, p.252

“Database” is a Detail

CLA Summit 2019, Austin 25Futureproofing Software with Clean Architecture

• The organizational structure of data (Data Model) is
architecturally significant

• The technologies and systems that move data on and
off a rotating magnetic surface are not

Implements

Data Access
Interface

Database

Calls

Use Case
Interactor

Data Access
Calls

Boundary

“Database” means “Persistent Storage” and
includes:
• Bona fide databases (Oracle, mySQL, etc.)
• File Systems
• File storage formats (INI, XML, JSON,

PNG,PDF, etc.)

Example: How do you persist Application Settings ?

Presenter
Presentation Notes
Persistent Storage also includes any formats used for storing measurement/analysis results on mass storage devices

Example – Persisting Application Settings :
If settings do not need to be saved/reloaded while application is running – use Constructor Dependency Injection
Otherwise create a Settings Handler class and call it to update/retrieve Settings data structure
Actual Save/Load actions would be hidden in a specific Settings Handler implementation
Settings Handler may implement multiple Interfaces – one per Component using specific subsystem settings. This is required to honor Interface Segregation Design Principle (ISP)

“The organizational structure of data, the data model, is architecturally significant. The technologies and systems that move data on and off a rotating magnetic surface are not. Relational database systems that force the data to be organized into tables and accessed with SQL have much more to do with the latter than with the former. The data is significant. The database is a detail.”, p.XXX

UI (Web) is a Detail

CLA Summit 2019, Austin 26Futureproofing Software with Clean Architecture

Creates

Presenter

[Humble] View

Uses

View Model

<DS>

Once MVC Views are split into Presenters and Humble Views,
the latter become a Detail:

• Humble Views contain no business logic
• View Models are simple data structures containing string

values and tags for each UI control/indicator
• Rendering View Model data structure becomes a trivial

task using any available Web-based technology

Deferring decision on Views implementation may save
substantial time when starting the project and makes the
design more scalable

Note: LabVIEW resists splitting UI code into Presenter/Control/View classes

Presenter
Presentation Notes
In the early days of LabVIEW, controls and indicators were one of compelling reasons to adapt LabVIEW for rapid application development.

LabVIEW controls combine functionality of Presenter/View/Controller for each control. It is not possible separating these features.

However, it is possible to restrict all GUI controls to String type and implement Views using String controls/indicators only. This might, though, become a burden as built-in type-specific events and functionality cannot be used in such case …

It is likely that Humble View classes would combine both, Output (View) and Input (Controls) functionality at the Frameworks and Drivers Level …

Message Broker

1. Decouples Publishers & Subscribers from each other
2. Decouples Publishers from Topics
3. Supports 1:1, 1:M or N:M Message Routing
4. Objects may Publish and/or Subscribe to multiple Topics
5. Removes constraints on Object Instantiation Order

CLA Summit 2019, Austin 27Futureproofing Software with Clean Architecture

Message Broker

Topic 1
Topic 2
Topic 3
Topic 4

Topic K

…

Controller 1 View 1

View 2

…
Controller 2

Presenter 1

…
Presenter 2

…

Use Message
Broker to
decouple
Humble Views
from Presenters
& Controllers at
runtime …

Frameworks are Details

CLA Summit 2019, Austin 28Futureproofing Software with Clean Architecture

“Good architectures are centered on
use cases so that architects can safely
describe the structures that support
those use cases without committing to
frameworks, tools, and environments.”,
p.198

“Architectures should not be
supplied by frameworks.
Frameworks are tools to be used,
not architectures to be
conformed to. If your
architecture is based on
frameworks, then it cannot be
based on your use cases.”, p.197

How do we protect
our Applications from

Frameworks ?!

AFDCAF G#

Presenter
Presentation Notes
How do we protect our Applications from Frameworks ?!

“Good architectures are centered on use cases so that architects can safely describe the structures that support those use cases without committing to frameworks, tools, and environments.”, p.198

“A good software architecture allows decisions about frameworks, databases, web servers, and other environmental issues and tools to be deferred and delayed. Frameworks are options to be left open. A good architecture makes it unnecessary to decide on Rails, or Spring, or Hibernate, or Tomcat, or MySQL, until much later in the project. A good architecture makes it easy to change your mind about those decisions, too. A good architecture emphasizes the use cases and decouples them from peripheral concerns.”, p.197

“Architectures are not (or should not be) about frameworks. Architectures should not be supplied by frameworks. Frameworks are tools to be used, not architectures to be conformed to. If your architecture is based on frameworks, then it cannot be based on your use cases.”, p.197

“Frameworks can be very powerful and very useful. Framework authors often believe very deeply in their frameworks. The examples they write for how to use their frameworks are told from the point of view of a true believer. Other authors who write about the framework also tend to be disciples of the true belief. They show you the way to use the framework. Often they assume an all-encompassing, all-pervading, let-the-framework-do-everything position.
This is not the position you want to take.
Look at each framework with a jaded eye. View it skeptically. Yes, it might help, but at what cost? Ask yourself how you should use it, and how you should protect yourself from it. Think about how you can preserve the use-case emphasis of your architecture. Develop a strategy that prevents the framework from taking over that architecture.”, p.198

“If your system architecture is all about the use cases, and if you have kept your frameworks at arm’s length, then you should be able to unit-test all those use cases without any of the frameworks in place”, p.198

A Framework or a Reuse Library ?

CLA Summit 2019, Austin 29Futureproofing Software with Clean Architecture

But, either way, the Dependency Rule should be observed …

Frameworks have key distinguishing features that separate them from normal Libraries:

• Inversion of Control: In a framework, unlike in libraries or in standard user applications, the
overall program's flow of control is not dictated by the caller, but by the framework

• Extensibility: A user can extend the framework – usually by selective overriding – or
programmers can add specialized user code to provide specific functionality

• Non-modifiable Framework Code: The framework code, in general, is not supposed to be
modified, while accepting user-implemented extensions. In other words, users can extend
the framework, but cannot modify its code

Software Framework, Wikipedia

Presenter
Presentation Notes
A Framework requires the Application to provide its business logic as plug-ins
A Framework is directing the flow of control within the application. The application passively participates by providing plug-ins
A Reuse Library just provides APIs. The Application needs to call these APIs in order to make use of the Library. The flow of control is clearly directed by the Application

“Frameworks have key distinguishing features that separate them from normal libraries:
inversion of control: In a framework, unlike in libraries or in standard user applications, the overall program's flow of control is not dictated by the caller, but by the framework.[1]
extensibility: A user can extend the framework – usually by selective overriding – or programmers can add specialized user code to provide specific functionality.
non-modifiable framework code: The framework code, in general, is not supposed to be modified, while accepting user-implemented extensions. In other words, users can extend the framework, but cannot modify its code.”

“The designers of software frameworks aim to facilitate software developments by allowing designers and programmers to devote their time to meeting software requirements rather than dealing with the more standard low-level details of providing a working system, thereby reducing overall development time.[2] For example, a team using a web framework to develop a banking website can focus on writing code particular to banking rather than the mechanics of request handling and state management.
Frameworks often add to the size of programs, a phenomenon termed "code bloat". Due to customer-demand driven applications needs, both competing and complementary frameworks sometimes end up in a product. Further, due to the complexity of their APIs, the intended reduction in overall development time may not be achieved due to the need to spend additional time learning to use the framework; this criticism is clearly valid when a special or new framework is first encountered by development staff.[citation needed] If such a framework is not used in subsequent job taskings, the time invested in learning the framework can cost more than purpose-written code familiar to the project's staff; many programmers keep copies of useful boilerplate for common needs.
However, once a framework is learned, future projects can be faster and easier to complete; the concept of a framework is to make a one-size-fits-all solution set, and with familiarity, code production should logically rise. There are no such claims made about the size of the code eventually bundled with the output product, nor its relative efficiency and conciseness. Using any library solution necessarily pulls in extras and unused extraneous assets unless the software is a compiler-object linker making a tight (small, wholly controlled, and specified) executable module.
The issue continues, but a decade-plus of industry experience[citation needed] has shown that the most effective frameworks turn out to be those that evolve from re-factoring the common code of the enterprise, instead of using a generic "one-size-fits-all" framework developed by third parties for general purposes. An example of that would be how the user interface in such an application package as an office suite grows to have common look, feel, and data-sharing attributes and methods, as the once disparate bundled applications grow unified into a suite which is tighter and smaller; the newer/evolved suite can be a product that shares integral utility libraries and user interfaces.
This trend in the controversy brings up an important issue about frameworks. Creating a framework that is elegant, versus one that merely solves a problem, is still rather a craft than a science. "Software elegance" implies clarity, conciseness, and little waste (extra or extraneous functionality, much of which is user defined). For those frameworks that generate code, for example, "elegance" would imply the creation of code that is clean and comprehensible to a reasonably knowledgeable programmer (and which is therefore readily modifiable), versus one that merely generates correct code. The elegance issue is why relatively few software frameworks have stood the test of time: the best frameworks have been able to evolve gracefully as the underlying technology on which they were built advanced. Even there, having evolved, many such packages will retain legacy capabilities bloating the final software as otherwise replaced methods have been retained in parallel with the newer methods.”

https://en.wikipedia.org/wiki/Software_framework

Protecting Your Code from the Framework

CLA Summit 2019, Austin 30Futureproofing Software with Clean Architecture

My Use Case

Actor

Implements

Violates
Dependency Rule

My Actor

Has a …

My Use Case

Actor

Implements

My Actor

Has a …

My Use Case

Actor

Actor Interface

Implements

Works OK but
Adds

Complexity

Has a …

Cannot be
Customized for
different Use

Cases

This is what Architects Do:
1. Draw Boundaries
2. Flip Dependency Arrows

Presenter
Presentation Notes
Protecting your code from the Framework : flip the dependency arrow !

“Solution” #2 does not work as AF Actor Class can only implement a single My_Actor Class

Solution #3 works, but complicates things a bit. It requires adding a separate Actor Interface class to Adapters Layer and one “proxy” actor per Use Case …

ClientClient

Client
Client

ArTLib Message Broker Design

CLA Summit 2019, Austin 31Futureproofing Software with Clean Architecture

LVQ_MB

Message Broker Interface

Message Transport
Interface

Message
Interface

LVQ_MB API

Implements

Calls

Uses

Uses

Uses

A ‘by reference’
Class

Actor Flavors

Client Message

Client Transport

Calls

Uses

Uses

Publisher Objects
Subscriber Objects

Implements

Implements

+Subscribe
+Unsubscribe

+Register_Publisher
+Unregister_Publisher

• ArTLib is a Reuse Library (not a Framework)
• ArT_Actor is a class template (unlike AF)
• Each application may create as many custom

ArT_Actor flavors as needed
• All dependencies already point in the right direction
• Actor flavors talk to each other via Message Broker

Message Broker “Interface”

Message Broker
Implementation

Presenter
Presentation Notes
Message Broker Dependencies are the same as in Solution #3 on prior slide:
Green Box constitutes Message Broker “Interface” Component
Blue Box is a concrete Message Broker Implementation Component
“Actor Flavors” are the “Clients” communicating via Publish/Subscribe

Note that “Actor Flavors” have different colors (depicts having “Actors” at Adapters/Frameworks/Test Layers”
Also note – there are no “Actors” at the Use Case Layer – which is necessary to comply to The Dependency Rule
Actor Flavor classes may be created from ArT_Actor template that comes as an add-on to ArTLib

ArT_Actor is a templates - not a part of Reuse Library (unlike Actor.lvclass in AF). That’s why I do not call ArTLib a “framework”. Each application may create as many custom Actor Flavors as needed and they would still be able talking to each other via ArT_ Message_Broker …

Two More Layers

CLA Summit 2019, Austin 32Futureproofing Software with Clean Architecture

Web

UIDB

External
Interfaces

Controllers

Use Cases

Entities

Entities

G Extensions

G
Language

Since Error Handling
Permeates all Layers

Error
Handling

LoggingMessagingMessage
Broker

Presenter
Presentation Notes

Stable Dependencies Principle (SDP) : Depend in the direction of stability !!!
“Stability is related to the amount of work required to make a change”
“A component with lots of incoming dependencies is very stable because it requires a great deal of work to reconcile any changes with all the dependent components.”

ArT_Errors Interface belongs to G Extensions (it is stable)

ArT_Error implementations belong to Framework Layer (they are details)

Logging and a large chunk of Error Handling belongs to the Adapters Layer as most Actors & Event Handlers should live there …

Slow and Dirty

CLA Summit 2019, Austin 33Futureproofing Software with Clean Architecture

The only way to go fast, is to go well
— Uncle Bob

• Project success won’t give you time to clean-
up design later on – delivering the next “best-
ever” version always becomes a top priority

• At startups, to survive the race, Architects
must insulate themselves from never-ending
prototype design changes by applying SOLID
Principles to ensure uber-quick feature turn-
around times

Slow and Dirty
Jason Gorman
Agile Wave Blog, 2011

Presenter
Presentation Notes
With a successful application you won’t get time to make it “clean” – competition and marketing geniuses would keep pressure on you to run as fast (and dirty) as you can to deliver the next “best ever” version of the app

This is also relevant when working with startups – but for a different reason. Software is often seen as a stepping stone for acquiring core knowledge and having no value on its own (very short life expectancy). However, with lack of formal requirements, uber-quick feature turn-around times and never-ending prototype design changes, Architects must insulate themselves from such changes through developing dependency interfaces to survive the race …

Do not underestimate the “marketing geniuses” factor – it will result in changes to requirements architects cannot anticipate at project start :
“because you never know what the marketing geniuses will do next”, p.288
“because there are always marketing geniuses out there just waiting to pounce on the next little bit of coupling you create”, p.288
“This kind of abstraction is not easy, and it will likely take several iterations to get just right. But it is possible. And since the world is full of marketing geniuses, it’s not hard to make the case that it’s often very necessary”, p.289

http://agileage.blogspot.com/2011/07/slow-and-dirty-rant-by-jason-gorman-at.html

Summary : General

CLA Summit 2019, Austin 34Futureproofing Software with Clean Architecture

Clean Architecture is a mindset - use it from project start without investing
upfront in an elaborate infrastructure …

Typical LabVIEW Projects start small with no/few formal Requirements.
Design steps :

• Use SOLID Principles to design and implement all classes
• Leave as many options open as possible, for as long as possible
• As application grows, start using Package Design Principles to group

cohesive classes into Components
• Once having formal Use Cases – start arranging components on a per

Use Case basis
• Always keep in mind the Dependency Rule and that adding

Architectural Boundaries to existing code later on can be very expensive

Presenter
Presentation Notes

Always keep in mind the Dependency Rule – decoupling your classes from specific data storage formats, frameworks and UI Technologies via Dependency Interfaces (DIP) – this would save you substantial refactoring effort down the road ...

With a successful application you won’t get time to make it “clean” later on – competition and marketing geniuses would keep pressuring you to run as fast (and dirty) as you can to deliver the next “best ever” version of the app

This is also relevant when working with startups – but for a different reason. Software is often seen as a stepping stone for acquiring core knowledge and having no value on its own (very short life expectancy). However, with lack of formal requirements, uber-quick feature turn-around times and never-ending prototype design changes, Architects must insulate themselves from such changes through developing dependency interfaces to survive the race …

“The way you keep software soft is to leave as many options open as possible, for as long as possible. What are the options that we need to leave open? They are the details that don’t matter.”, p.140

Do not underestimate the “marketing geniuses” factor – it will result in changes to requirements architects cannot anticipate at project start :
“because you never know what the marketing geniuses will do next”, p.288
“because there are always marketing geniuses out there just waiting to pounce on the next little bit of coupling you create”, p.288
“This kind of abstraction is not easy, and it will likely take several iterations to get just right. But it is possible. And since the world is full of marketing geniuses, it’s not hard to make the case that it’s often very necessary”, p.289

• Create virtual folders for each Architectural Layer:
• Entities
• Use Cases
• Adapters
• Environment
• Main
• Tests

• Keep classes in their Architectural Layer virtual folders
• Choose Class Names appropriate for the Layer:

• /Use_Cases/Calibrate_HW
• /Use_Cases/Calibrate_HW_Actor (no Actors allowed in

Use Case Layer)
• Create a VI Analyzer Test to check for code dependencies

pointing to outer Layers

Summary: How To Create Architectural Boundaries

CLA Summit 2019, Austin 35Futureproofing Software with Clean Architecture

Presenter
Presentation Notes
Architectural Boundaries have no “physical” manifestation in case of an application running in LabVIEW IDE or a single EXE file (the Monolith). These are “virtual” boundaries implemented by properly organizing application code into Architectural Layers and Use Case folder hierarchies.

For plug-in architectures using PPL plugins, boundaries do have a physical manifestation – a PPL Interface Library and corresponding .lvlibp file

Summary: How to Flip Dependency Direction

CLA Summit 2019, Austin 36Futureproofing Software with Clean Architecture

• Use Dependency Inversion Principle (DIP) to
revert direction of a dependency

• Partial (one way) decoupling may be
sufficient for Architectural Layer Boundaries

• Full (two way) decoupling is preferred for
Use Case Boundaries

Data Access
Interface

Database

Calls

Use Case
Interactor

Data Access
Calls

Architectural Layer Boundary

Use Case A Use Case B

References

[1] Clean Architectures, Robert C. Martin, Prentice Hall, 2017
[2] Agile Software Development, Robert C. Martin, Prentice Hall, 2003

[3] Who Needs an Architect ?, Martin Fowler, IEEE Software
[4] GUI Architectures, Martin Fowler, martinFowler.com, 2006
[5] Implementing Clean Architectures – Frameworks vs. Libraries, Plainionist, 2019
[6] Slow and Dirty, Jason Gorman, Agile Wave Blog, 2011

CLA Summit 2019, Austin 37Futureproofing Software with Clean Architecture

https://www.amazon.com/Clean-Architecture-Craftsmans-Software-Structure/dp/0134494164/ref=sr_1_1?ie=UTF8&qid=1525211613&sr=8-1&keywords=clean+architecture
http://www.amazon.com/Software-Development-Principles-Patterns-Practices/dp/0135974445
https://www.martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf
https://www.martinfowler.com/eaaDev/uiArchs.html
http://www.plainionist.net/Implementing-Clean-Architecture-Frameworks/
http://agileage.blogspot.com/2011/07/slow-and-dirty-rant-by-jason-gorman-at.html

My To Do List

CLA Summit 2019, Austin 38Futureproofing Software with Clean Architecture

1. Re-arrange ArTLib classes into Components based on their
Architectural Level (especially Error Handling Classes)

2. Figure out whether (and why) Actor Framework would create obstacles
when being used on projects with Clean Architecture

3. Refactor ArTLib to use Native LabVIEW Interfaces instead of “Abstract
Class” workaround

Presenter
Presentation Notes
Slide Notes

Questions ?

CLA Summit 2019, Austin 39Futureproofing Software with Clean Architecture

Design Smells – The Odors of Rotting Software

1. Rigidity – The system is hard to change because every change forces many other
changes to other parts of the system

2. Fragility – Changes cause the system to break in places that have no conceptual
relationship to the part that was changed

3. Immobility– It is hard to disentangle the system into components that can be reused in
other systems

4. Viscosity – Doing things right is harder that doing things wrong
5. Needless Complexity – The design contains infrastructure that adds no direct benefit
6. Needless Repetition – The design contains repeating structures that could be unified under

a single abstraction
7. Opacity – It is hard to read and understand. It does not express its intent well

Futureproofing Software with Clean Architecture

[1] Robert C. Martin, p.88

CLA Summit 2019, Austin 40

Presenter
Presentation Notes
“Agile teams apply principles to remove smells. They don’t apply principles when there are no smells. It is a mistake to unconditionally conform to a principle just because it is a principle”, [2] Robert C. Martin, p.88

“These symptoms are similar in nature to code smells, but they are at a higher level. They are smells that pervade overall structure of the software rather than a small section of the code. ”, [2] Robert C. Martin, p.85

	Futureproofing Software with �Clean Architecture
	Abstract
	About Myself …
	The Must Read Books
	Clean Architecture : Select Quotes
	Signature of a Mess
	Future-Proofing
	Software Values to Stakeholders
	What IS Software Architecture ?
	Goal of Software Architecture
	What Makes a Software Architect ?
	Agile Software Design: The Big Picture
	Agile Software Design Philosophy
	SOLID Principles
	The Clean Architecture
	Architectural Boundaries
	How to Cross Boundaries ?
	Policy and Details
	Business Rules
	Interface Adapters
	Humble Objects
	Details : Frameworks & Drivers
	Agile Video Sales App Example
	Main Component & Tests
	“Database” is a Detail
	UI (Web) is a Detail
	Message Broker
	Frameworks are Details
	A Framework or a Reuse Library ?
	Protecting Your Code from the Framework
	ArTLib Message Broker Design
	Two More Layers
	Slow and Dirty
	Summary : General
	Summary: How To Create Architectural Boundaries
	Summary: How to Flip Dependency Direction
	References
	My To Do List
	Questions ?
	Design Smells – The Odors of Rotting Software

