
AF Forwarding Utility
Painless Data Distribution in Actor Framework

Casey May

Zyah Solutions Co-Founder

October 20, 2021



Introduction

• Zyah Solutions
• Founded by a group of CLAs with particular experience and interest in 

developing large-scale applications.

• We pride ourselves on clean, modular and high-quality solutions 
adhering to SOLID design principles.

• Together we have over 50 years of LabVIEW experience.

• Personally been using LabVIEW since 2006 and been a CLA 
since 2007.

10/20/2021 2



Agenda

• Benefits and Challenges of Actor Framework

• Today’s Challenge: Distributing Data

• Standard Solutions

• A Better Way?

10/20/2021 3



Actor Framework:
The Broccoli of LabVIEW

● It’s a clean, healthy solution for large and 
complex applications.

● Scales well and provides great flexibility with 
out-of-the-box clone handling, inheritance, and 
dynamic dispatch.

● Lends itself to SOLID design.

● Unpalatable to some LabVIEW users.

10/20/2021 4



Actor Framework:
Common Objections

● Steep learning curve
● Challenging to debug
● IDE slowdown for large Actor 

projects
● Standard AF Msgs force tight 

coupling*
● Tooling is lacking for common 

operations
● Moving data through wide and/or 

deep trees is challenging

10/20/2021 5



Traversing the Tree

10/20/2021 6



Traversing the Tree

10/20/2021 7



Traversing the Tree

10/20/2021 8



Additional Challenges

• Using default Actor messaging 
forces tight coupling between actor 
layers.*

• In plugin architectures, data 
recipients could be dynamic, which 
requires additional overhead to 
handle.

10/20/2021 9



Important Note #1

• We’re only talking about announcements and not requests.

• Simple distribution of data updates is relatively safe and often 
proceeds unchanged through the tree.

10/20/2021 10



Important Note #1

• We’re only talking about announcements and not requests.

• Simple distribution of data updates is relatively safe and often 
proceeds unchanged through the tree.

• Requests involve “control” of an Actor and are less safe for 
automatic broadcast.

10/20/2021 11



Traditional Solutions

• Many individual messages that do 
exactly (or nearly exactly) the same 
thing.

• Pro:
Explicit handling at each actor, so data can 
be processed, modified, or abstracted as-
needed.

10/20/2021 12



Traditional Solutions

• Many individual messages that do 
exactly (or nearly exactly) the same 
thing.

• Cons:
• Lots of additional classes and methods, 

which can bloat the IDE.

• Undesirable duplication of identical or 
nearly-identical code.

10/20/2021 13



Traditional Solutions

• Many individual messages that do 
exactly (or nearly exactly) the same 
thing.

• Cons:
• Lots of additional classes and methods, 

which can bloat the IDE.

• Undesirable duplication of identical or 
nearly-identical code.

• Easy to mix up Send methods with similar 
names and identical connector panes.

10/20/2021 14



Traditional Solutions

• Creating “0-coupled” messages for each 
announcement type

• Allows strict-typing

• Problem of many overrides remains

• Setup/debugging is challenging because messaging 
origin / routing is less clear

10/20/2021 15

Abstract

Concrete



Traditional Solutions

• Circumventing the actor tree using 
alternate messaging such as user 
events, queues, etc.

─Messaging are routed through multiple 
transport mechanisms, which can 
complicate debugging.

─Code clarity and readability often suffers 
with multiple transport mechanisms.

─Competing transport mechanisms 
increases potential for timing/locking 
issues.

10/20/2021 16



Traditional Solutions

• Sharing abstract data through a 
common method in your base actor

• Results in overloaded override methods

• Potential for run-time parsing errors

• Brittle to changes in message names, etc

10/20/2021 17



Important Note #2

• We’re going to address announcement Msgs that do not need 
to be modified before reaching their ultimate destination(s).

• If the contents of the messages need to be modified in transit, we 
suggest sticking to the individual/unique Msg approach.

10/20/2021 18



How Can We Make This Better?

• Challenge #1: A better 
solution would need to…

• Limit duplication of identical 
messages when appropriate.

• Not couple actors to one another.

• Use strictly-typed messages.

10/20/2021 19



How Can We Make This Better?

10/20/2021 20

• Solution #1: Interfaces!
• Interfaces allow the same Msg class 

to be used by many actors.



How Can We Make This Better?

10/20/2021 21

• Solution #1: Interfaces!
• Interfaces allow the same Msg class 

to be used by many actors.



How Can We Make This Better?

10/20/2021 22

• Solution #1: Interfaces!
• Interfaces allow the same Msg class 

to be used by many actors.

• Actors are only coupled to
the interface, not each other.



How Can We Make This Better?

10/20/2021 23

• Solution #1: Interfaces!
• Interfaces allow the same Msg class 

to be used by many actors.

• Actors are only coupled to
the interface, not each other.

• Interface Msgs remain
strictly typed.



How Can We Make This Better?

• Challenge #2: How do we know which Actors support the 
different Msg classes?

• We need a generic way to test whether ANY Actor inherits from ANY 
other Msg Interface.

• We need this to know which Actors to forward Msgs to.

10/20/2021 24

• Solution #2
• Using the <Preserve Run-Time Class> 

function, we can determine if an Actor 
supports the Msg being forwarded.

• Note that <To More Specific Class> will NOT 
work here.



How Can We Make This Better?

• Challenge #3: How can we route the Msgs automatically 
while still adhering to the AF tree?

• We have re-usable Msgs that are a part of an interface.

• We can determine if an Actor inherits from a Msg’s interface.

• How can we use those two pieces of information to automatically route 
messages?

10/20/2021 25



How Can We Make This Better?

• Solution #3a: Route Msgs using a map of enqueuers
• When an Actor receives a Msg, determine the Msg’s interface and look-

up (e.g. with a map) the enqueuers of the nested Actors that support 
that Msg.

• But how is that map populated?

• Solution #3b: Populate the map as nested Actors are 
launched

• If there were list of interfaces containing AF Msgs that could be 
forwarded, when an Actor is launched, we could check that to see 
whether that Actor supports that interface and, if so, store its enqueuer 
for look-up later.

10/20/2021 26



Message Routing

10/20/2021 27



High Level

• Every time you launch a Nested 
Actor, figure out what interfaces it 
inherits from and add to map.

10/20/2021 28



High Level

• Every time you launch a Nested 
Actor, figure out what interfaces it 
inherits from and add to map.

• Every time an Actor receives a 
Msg, check if it’s from an interface 
of interest, if so, forward to any 
interested nested actors.

10/20/2021 29



Demo

10/20/2021 30



• All the pieces you need to start 
integrating this with your own AF 
application comes in a VIP*.

• Once installed, the easiest way to get 
started using this utility is to insert the 
“AF Msg Forwarding Actor” in your 
inheritance hierarchy.

• A merge VI with this actor can be found 
on the Zyah palette.

10/20/2021 31

How It Integrates



• Override <Get Interfaces to Forward> in each actor that directly 
inherits from “AF Msg Forwarding Actor” to enable forwarding.

10/20/2021 32

How It Integrates
Identify Interfaces to Forward

• Necessary to specify the which Msgs
should be forwarded in the application 
(identified by their owning interfaces).

• Identification can be hard-coded or done 
programmatically (e.g. for plug-ins).

• We recommend using a base Actor 
(specific to your application) so you only 
have to override the VI once.



• API
• <Initialize Forwarding Utility.vi>

• Used to identify the Forwarding Utility and 
forwarding interfaces for the given application 
(using <Get Forwarding Utility> and <Get 
Interfaces to Forward>).

• This VI should be called before any nested 
actors are launched to establish and clear the 
map.

• In a common initialization method or override of 
<Pre Launch Init> could reduce code duplication.

10/20/2021 33

How It Integrates
AF Msg Forwarding Actor



• API
• <Launch Nested App Actor.vi>

• Calls the normal <Launch Nested Actor.vi> and populates the forwarding map 
with the newly launched actor.

10/20/2021 34

How It Integrates
AF Msg Forwarding Actor



• At this point, all announcement Msg routing is determined by 
inheritance.

• Payload method overrides must be created separately.

• Actors that are forwarding the message up the AF Tree need to 
have forwarding enabled, but do NOT need to inherit from the 
Msg owning interfaces.

10/21/2021 35

How It Integrates



Recap/Benefits

• One transport method that adheres to the AF message tree 
guidelines.

• Automatic message routing via inheritance (i.e. less work for 
developers).

• Easy to change routing without needing to modify block diagrams.

• This is ESPECIALLY helpful for plug-ins.

• Small code footprint – fewer Msgs and overrides needed 
(especially if wrapped into a Base Actor).

• Root Actor never needs to change to accommodate more 
forwarding Msgs.

10/20/2021 36



Future Features/Enhancements

• Compatibility with AF PPLs.

• This hasn’t been tested on targets other than a PC – might 
need to modify to work with RT, etc.

• Separate maps for what gets forwarded up the tree vs down 
rather than relying on (lack) of interface inheritance.*

10/20/2021 37



Where to Get It

• Available as a VI package or as source code
• VIPM (Easiest)

• https://gitlab.com/zyah-solutions/af-msg-forwarding-utility

• Blog post coming soon! (http://www.zyahsolutions.com )

• Need help?
• Email us: info@zyahsolutions.com

• Discord server link on the website

10/20/2021 38

https://gitlab.com/zyah-solutions/af-msg-forwarding-utility
http://www.zyahsolutions.com/
mailto:info@zyahsolutions.com


Questions?



Appendix
Technical Details



• By default, if the Msg is not implemented by the receiving Actor, 
but the Msg is identified as a forwarding message, it will send 
the Msg the Actor’s caller (i.e. up the AF Tree).*

• Msgs only get forwarded to nested actors if the receiving Actor 
inherits from the Msg owning interface or it is the root actor.

• This is done to avoid infinite forwarding between an actor that supports 
the message and its caller.

10/20/2021 41

Notes on Routing



Zyah AF Msg Forwarding Utility

• Overview
• Part 1 (the Zyah AF Msg Forwarding Utility class)

• Based off inheritance, we can tell whether a Msg is supported by an Actor.

• We use the Msg’s owning library as a key to create a map of enqueuers that 
belong to nested Actors that support that message.

• Part 2 (integrating the class with an AF application)
• Establish which Actor announcements should be forwarded by way of their 

owning libraries.

• Route the messages using an override of Receive Message.vi

10/20/2021 42



How it Works
Initializing the Forwarding Map

• <Initialize Forwarding Map.vi>

10/20/2021 43

• Must be called first.

• Establishes which type of map to key to use (paths in this example).
• Paths are the keys.

• A set of Actor enqueuers are the map values.

• Stores the map as a part of the forwarding utility.

• This is the first of two must override Vis.



How it Works
Identifying Msgs to Be Forwarded 

• <Identify Msg Payload Owners.vi>

10/20/2021 44

Msg Payload Owners Map Lookup Keys

• This is the second and final must override VI.

• All Msgs in a given library will be forwarded.

• You can change the lookup keys if desired.

• The keys of the map are also stored as a set.



How it Works
Adding Actors to the Map

• <Add Actor Enqueuer to Map.vi>

10/20/2021 45

• When an Actor is launched, the 
Actor wire and its enqueuer is fed 
into this VI where it is checked for 
inheritance against the set of Msg 
Payload Owners that were 
previously shown. 

• Actors that inherit from the given 
Msg Payload Owner are added to 
the map appropriately.

• This VI should be invoked every 
time a nested actor is launched.



How it Works
Forwarding Msgs

• <Forward Msg Using Map.vi>

10/20/2021 46

• When a Msg is received by an Actor (in <Receive Message.vi>), it 
uses this API to lookup the enqueuers of the Actors that support 
the message and forward it along accordingly.



• <Initialize Forwarding Map.vi>
• Used to set up the type of keys for the map and initialize values.

• Must override.

• <Identify Msg Payload Owners.vi>
• Used to identify application specific owning libraries containing Msgs to 

forward to other nested Actors.

• Must override.

10/20/2021 47

How it Works
Recap



• <Add Actor Enqueuer to Map.vi>
• Used when launching a nested Actor to populate the forwarding map.

• <Forward Msg Using Map.vi>
• Used when receiving a Msg to automatically forward to any nested 

actors that support it.

10/20/2021 48

How it Works
Recap (continued)



How it Integrates
Base Actor Private Data

• The Forwarding Utility must be added to every 
actor that could be used to forward Msgs.

• Though not strictly necessary, to avoid duplicated 
code, we recommend adding the utility class (as 
well as an opt-in flag) to a Base Actor.

• You could put it in your own or inherit it from one Zyah
provides.

• Accessor VIs for each item should also be created 
within the Base Actor.

10/20/2021 49



How it Integrates
Base Actor API (Protected)

• <Initialize Forwarding Map.vi>
• Specifies which map to use along with which 

child instance of the Forwarding Utility and then 
calls the VI of the same name from within the 
Forwarding Utility.

• Stores the map in the Base Actor’s private data.

• <Launch Nested App Actor.vi> (recommended)

• Wraps normal <Launch Nested Actor.vi> 
functionality with map population functions from 
the Forwarding Utility.

• Populates “Is Forwarding Actor” parameter.

10/20/2021 50



How it Integrates
Base Actor Override

• <Receive Message.vi>
• Verifies that the Msg and Actor support 

forwarding (not shown).

• If the current actor implements the 
message, executes it.

• If the actor does not implement the 
message and it’s not the root actor, 
forwards the message up the Msg tree.

• Otherwise forwards the Msg to all the 
supported nested Actors.

10/20/2021 51



Actor Framework:
The Broccoli of LabVIEW

● Steep learning curve
● Challenging to debug
● IDE slowdown
● Refactoring can be painful
● AF messages force tight coupling
● Tooling is lacking for common 

operations
● Messaging in large hierarchies 

can be painful

10/20/2021 52



Launching and Routing

• Root launches Digital Temperature 
Display.

• During launch, Root determines Digital 
Temperature Display’s parent interfaces.

• In this case, Digital Temperature Display 
inherits from the Oven Announcements 
interface.

10/20/2021 53



Launching and Routing

• Digital Temperature Display’s enqueuer then gets added to 
the Forwarding Map.

• When you pass Oven Announcements in as a key, all 
Nested Actor enqueuers that inherit from that interface are 
returned.

10/20/2021 54



Launching and Routing

• When Display Proxy receives a Message, it determines the 
Message’s owning interface.

• The owning interface is used as the map key and the 
Message is forwarded to any matching enqueuers.

10/20/2021 55



Launch Diagram

10/20/2021 56



Chart View

Traversing the Tree

10/20/2021 57

Controller

Stage 

Controller

Stage HAL

GUI 

Controller

Interlock 

Monitor

x,y

Data 

Logger

x,yx,y



Traditional Solutions

• Circumventing the actor tree using 
alternate messaging such as user 
events, queues, etc.

─Messaging are routed through multiple 
transport mechanisms, which can 
complicate debugging.

─Code clarity and readability often suffers 
with multiple transport mechanisms.

─Competing transport mechanisms 
increases potential for timing/locking 
issues.

10/20/2021 58



Message Routing

10/20/2021 59



Zyah AF Msg Forwarding Utility

• Interfaces (solution 1) are included out of the box in LabVIEW 
2020+.

• Determining interface inheritance and map population (solutions 
2 and 3) are wrapped up into the Zyah AF Msg Forwarding 
Utility.

• Available today via VIPM.

10/20/2021 60


