.Z.ZyGh

SOLUTIONS

AF Forwarding Utility

Painless Data Distribution in Actor Framework

Casey May
Zyah Solutions Co-Founder
October 20, 2021

Introduction 74

« Zyah Solutions

* Founded by a group of CLAs with particular experience and interest in
developing large-scale applications.

* We pride ourselves on clean, modular and high-quality solutions
adhering to SOLID design principles.

» Together we have over 50 years of LabVIEW experience.

 Personally been using LabVIEW since 2006 and been a CLA
since 2007.

10/20/2021

Agenda

« Benefits and Challenges of Actor Framework
« Today’'s Challenge: Distributing Data

» Standard Solutions

* A Better Way?

10/20/2021

Actor Framework:
The Broccoli of LabVIEW

. It's a clean, healthy solution for large and
complex applications.

« Scales well and provides great flexibility with
out-of-the-box clone handling, inheritance, and
dynamic dispatch.

. Lends itself to SOLID design.

. Unpalatable to some LabVIEW users.

10/20/2021

Actor Framework:
Common Objections

= & 2 M Ll
] - D Build status

« Steep learning curve

« Challenging to debug 5[Messages
« |IDE slowdown for large Actor . BRI Al -
- : L Calibrate
projects | =T Tae
o Standard AF MSQS force tlght - . | @ @ Restore from EEPROM Msg.Ivclass
Tale L Cam: . i @ @ SetCalibration Msg.lvclass
Coup“ng.) EENTET - [J Other BOB Commands
« Tooling is lacking for common 6@ Receive
OperationS . @+ [J Session

« Moving data through wide and/o
deep trees is challenging

10/20/2021 5

Traversing the Tree

Chart Temperature Digital Temperature
Display Display

10/20/2021

Root Actor

WY

raversing the Tree

Root Actor
@ Handle Fridge Temperature Msg.lvclass
W&" Handle Fridge Temperature Msg.ctl

Display Pro; Fridge Praog

Handle Fridg_e Temperature Msg.hvclass =3 @ Handle Fridge Temperature Msg.lvclass
& Handle Fridge Temperature Msg.ctl W&" Handle Fridge Temperature Msg.ctl

@l Send Handle Fridge Temperature.vi @ Send Handle Fridge Temperature.vi
@ Dowi

Chart Temperature Digital Temperature
Display Display
W Handle Fridge Temperature Msg.lvclass | W Handle Fridge Temperature Msg.lvclass
: W&" Handle Fridge Temperature Msg.ctl W&" Handle Fridge Temperature Msg.ctl

- /@ Send Handle Fridge Temperature.vi , Send Handle Fridge Temperature.vi
@, Dowi , Dowi

Fridge

10/20/2021 e -

raversing the Tree

Actorin

Fridge Temp

5. @ Handle Fridge Ter

W&" Handle Fridge .
@ Send Handle F "

10/20/2021

M[No Error_~}]

[No Error v}

Fridge Temp
»

error in

Actor out

Digital Ten ...

error out
]

[No Error v}

Actorin

Root Act

Fridge Temp
»

1 error in

Actor out

]

error out

[No Error v}

Actor out

]

Actor out

error out
=]

i Actorin
Frid i

Fridge Temp
[

error in

[No Error -}

Actor out
BOBJ]

error out

Fridge

Additional Challenges

« Using default Actor messaging

forces tight coupling between actor
layers.*

* In plugin architectures, data
recipients could be dynamic, which
requires additional overhead to
handle.

10/20/2021

-+ =" Dependencies

Alpha Actor.lvlib

i G vidib
3P ¥ Beta Actor.Iviib

Important Note #1 %

* We're only talking about announcements and not requests.

« Simple distribution of data updates is relatively safe and often
proceeds unchanged through the tree.

Chart Temperature Jligital Tempe
Display

10/20/2021 10

Important Note #1 %

* We're only talking about announcements and not requests.

« Simple distribution of data updates is relatively safe and often
proceeds unchanged through the tree.

* Requests involve “control” of an Actor and are less safe for
automatic broadcast.

10/20/2021

11

Traditional Solutions

« Many individual messages that do
exactly (or nearly exactly) the same
thing.

* Pro:

Explicit handling at each actor, so data can
be processed, modified, or abstracted as-
needed.

10/20/2021

Encoder Counts

X

b‘l“ljl“l =
L LT
-

513 | =

In Tolerance
X

llr,'

12

Traditional Solutions /o

« Many individual messages that do e A
exactly (or nearly exactly) the same e e

=) h'd Handle ¥V MMen herlace

thlng. _h'd Handle ¥V MMen herlace

= :ﬂ___ Handlae ¥V bea herlace
- @ Handle XY Msg.lvclass

» Cons: - 8" Handle XY Msg.ctl
» Lots of additional classes and methods, - @, Send Handle XY.vi

L. [@ Dowi

which can bloat the IDE.

« Undesirable duplication of identical or
nearly-identical code.

10/20/2021

Traditional Solutions

« Many individual messages that do
exactly (or nearly exactly) the same
thing.

e Cons:

* Lots of additional classes and methods,
which can bloat the IDE.

« Undesirable duplication of identical or
nearly-identical code.

« Easy to mix up Send methods with similar
names and identical connector panes.

10/20/2021

HAHDOLE
nr |:-—l-

HAMDLE
ar |:-—l-

HAMDLE
ar |:-—l-

14

Traditional Solutions

 Creating “0-coupled” messages for each
announcement type
* Allows strict-typing
* Problem of many overrides remains

« Setup/debugging is challenging because messaging
origin / routing Is less clear

Fridge Actor in Fridge Actor out

Concrete Fridge Temperature Msg [==4

U
Refrigerator Temperature =
»

error in (no error) o error out

10/20/2021

Abstract

15

Traditional Solutions /o

 Circumventing the actor tree using
alternate messaging such as user
events, queues, etc.

—Messaging are routed through multiple
transport mechanisms, which can
complicate debugging.

—Code clarity and readability often suffers
with multiple transport mechanisms.

—Competing transport mechanisms
Increases potential for timing/locking
ISsues.

10/20/2021 16

Traditional Solutions

« Sharing abstract data through a
common method in your base actor
« Results in overloaded override methods
« Potential for run-time parsing errors
* Brittle to changes in message names, etc

10/20/2021

17

A
Important Note #2 A

* We're going to address announcement Msgs that do not need
to be modified before reaching their ultimate destination(s).

* If the contents of the messages need to be modified Iin transit, we
suggest sticking to the individual/unigue Msg approach.

Position (mm) Position Error (mm) In Tolerance

Encoder Counts
X

6030 =
(LT
-

513 =

10/20/2021 18

How Can We Make This Better? 4

 Challenge #1: A better
g o i 8" Handle XY Msg.ctl
i @ Send Handle XY.vi
@l Dowi

solution would need to...

« Limit duplication of identical
messages when appropriate.

7 Stage Controller _— GLI Contrallegr 7 Interiock Monitor SRSl Vialncity Caleigtor
« Not couple actors to one another. PRt T il eyl B TC
c i " Handle XY Msg.ctl i~ " Handle XY Msg.ctl - §8" Handle XY Msg.ctl - " Handle XY Msg.ctl

@), Send Handle XY.vi i [@l Send Handle XY.vi L@ Send Handle XY.vi i~ @ Send Handle XY.vi

* Use strictly-typed messages.

Stage HAL Position Logger Chart Display
= @ Handle XY Msg.lvclass = @ Handle XY Msg.lvclass
i~ §8" Handle XY Msg.ctl i~ §8" Handle XY Msg.ctl
Send Handle XY.vi || i @l Send Handle XY.vi G

L [# Dowi L[# Dowi

10/20/2021 19

How Can We Make This Better? 4

 Solution #1: Interfaces!

* Interfaces allow the same Msg class
to be used by many actors.

- [3 Stage HAL Announcements.Iviib
-+ [Messages
' W Handle XY Msg.lvclass
— 8" Handle XY Msg.ctl
- & Send Handle XY.vi
®. Dowi

@, Handle XY.vi

10/20/2021 20

How Can We Make This Better?

 Solution #1: Interfaces!

* Interfaces allow the same Msg class
to be used by many actors.

~ A ?, Fridge Announcements.lvlib
- [Messages

. [+ @ Handle Freezer Temperature Msg.lvclass

+- @ Handle Fridge Temperature Msg.lvclass

= ag Fridge Announcements.lvclass
@, Handle Freezer Temperature.vi
“ @, Handle Fridge Temperature.vi

10/20/2021

Chart Display

21

How Can We Make This Better?

 Solution #1: Interfaces!

* Interfaces allow the same Msg class
to be used by many actors.

« Actors are only coupled to
the interface, not each other.

~ A ?, Fridge Announcements.lvlib
- [Messages

. [+ @ Handle Freezer Temperature Msg.lvclass

5 @ Handle Fridge Temperature Msg.lvclass
~ ag Fridge Announcements.lvclass

@, Handle Freezer Temperature.vi

@, Handle Fridge Temperature.vi

10/20/2021

Chart Display

22

How Can We Make This Better?

 Solution #1: Interfaces!

* Interfaces allow the same Msg class 5 @ Handle XY Msg.lvclass
to be used by many actors. 8) Handle XY Msg.ctl
i @, Send Handle XY.vi
« Actors are only coupled to - |@ Do.i

the interface, not each other.

* Interface Msgs remain

StriCtly typed Cluster of class private data
AY Data

10/20/2021

23

How Can We Make This Better? 74

« Challenge #2: How do we know which Actors support the

different Msg classes?
 We need a generic way to test whether ANY Actor inherits from ANY

other Msg Interface.
* We need this to know which Actors to forward Msgs to.

e Solution #2
« Using the <Preserve Run-Time Class>
function, we can determine if an Actor
supports the Msg being forwarded.
* Note that <To More Specific Class> will NOT
work here.

24

10/20/2021

How Can We Make This Better? 74

* Challenge #3: How can we route the Msgs automatically
while still adhering to the AF tree?
 We have re-usable Msgs that are a part of an interface.
« We can determine if an Actor inherits from a Msg’s interface.

« How can we use those two pieces of information to automatically route
messages?

10/20/2021 25

How Can We Make This Better? 4

« Solution #3a: Route Msgs using a map of enqueuers

 When an Actor receives a Msg, determine the Msg’s interface and look-
up (e.g. with a map) the enqueuers of the nested Actors that support

that Msg.
« But how Is that map populated?

« Solution #3b: Populate the map as nested Actors are
launched

« |f there were list of interfaces containing AF Msgs that could be
forwarded, when an Actor Is launched, we could check that to see
whether that Actor supports that interface and, if so, store its enqueuer

for look-up later.

10/20/2021 26

Message Routing %

Root Actor

Display Proxy

Chart Temperature Digital Temperature
Display Display

10/20/2021 27

High Level

« Every time you launch a Nested
Actor, figure out what interfaces it
iInherits from and add to map.

10/20/2021

28

High Level X

« Every time you launch a Nested
Actor, figure out what interfaces it
iInherits from and add to map.

« Every time an Actor receives a
Msg, check if it's from an interface
of interest, If so, forward to any
Interested nested actors.

— &, — -

10/20/2021 AS

Demo

10/20/2021

30

How It Integrates

* All the pieces you need to start
Integrating this with your own AF
application comes in a VIP*.

* Once Installed, the easiest way to get
started using this utility Is to insert the
“AF Msg Forwarding Actor” in your
Inheritance hierarchy.

« A merge VI with this actor can be found
on the Zyah palette.

10/20/2021

- |_;l, AF Msg Forwarding Actor.vlib

[Messages for this Actor

= W AF Msg Forwarding Actor.lvclass
'ﬁ'" AF M 5-_:1 Forwarding Actor.ctl
i __J Accessors

=] ,,J' API

: H"'P“ Initialize Forwarding Utility.v
HL'P“ Launch MNested App Actor.vi
—f_,,." Framework
U‘T“Fl.-_'c':l e Message.vi
- __,J SubVls
= f_,J For Override
HL'P“ et Forwarding Utility.vi
HL'P“I et Interfaces to Forward.vi
HL'P“ Reset Forwarding Utility.vi
II'L'P“ Update Interfaces to Forward.vi

31

How It Integrates k.
Identify Interfaces to Forward

« Override <Get Interfaces to Forward> in each actor that directly
inherits from “AF Msg Forwarding Actor” to enable forwarding.

* Necessary to specify the which Msgs
should be forwarded in the application
(identified by their owning interfaces).

« |dentification can be hard-coded or done
programmatically (e.g. for plug-ins).

 We recommend using a base Actor
(specific to your application) so you only
have to override the VI once.

10/20/2021 32

How It Integrates k.
AF Msg Forwarding Actor

* API

* <|nitialize Forwarding Ultility.vi>

« Used to identify the Forwarding Utility and
forwarding interfaces for the given application
(using <Get Forwarding Utility> and <Get
Interfaces to Forward>).

« This VI should be called before any nested
actors are launched to establish and clear the
map.

* In a common initialization method or override of
<Pre Launch Init> could reduce code duplication.

10/20/2021 33

How It Integrates k.
AF Msg Forwarding Actor

* API

« <Launch Nested App Actor.vi>

 Calls the normal <Launch Nested Actor.vi> and populates the forwarding map
with the newly launched actor.

Auto-Stop? M) |CTER
Open Actor Core front panel? (F|[CTE

10/20/2021 34

How It Integrates %

* At this point, all announcement Msg routing is determined by
Inheritance.

» Payload method overrides must be created separately.

 Actors that are forwarding the message up the AF Tree need to
have forwarding enabled, but do NOT need to inherit from the

Msg owning interfaces.

10/21/2021 35

Recap/Benefits %

* One transport method that adheres to the AF message tree
guidelines.

« Automatic message routing via inheritance (i.e. less work for

developers).
« Easy to change routing without needing to modify block diagrams.

« This is ESPECIALLY helpful for plug-ins.

« Small code footprint — fewer Msgs and overrides needed
(especially if wrapped into a Base Actor).

* Root Actor never needs to change to accommodate more
forwarding Msgs.

10/20/2021 36

Future Features/Enhancements

« Compatibility with AF PPLSs.

 This hasn’t been tested on targets other than a PC — might
need to modify to work with RT, etc.

« Separate maps for what gets forwarded up the tree vs down
rather than relying on (lack) of interface inheritance.*

10/20/2021

37

Where to Get It

 Avallable as a VI package or as source code
* VIPM (Easiest)

* Blog post coming soon! (

* Need help?

* Emall us:
* Discord server link on the website

10/20/2021

38

https://gitlab.com/zyah-solutions/af-msg-forwarding-utility
http://www.zyahsolutions.com/
mailto:info@zyahsolutions.com

Questions?

Appendix

Technical Detalls

Notes on Routing %

« By default, if the Msg Iis not implemented by the receiving Actor,
but the Msg Is identified as a forwarding message, it will send
the Msg the Actor’s caller (i.e. up the AF Tree).*

* Msgs only get forwarded to nested actors if the receiving Actor
iInherits from the Msg owning interface or it is the root actor.

* This is done to avoid infinite forwarding between an actor that supports
the message and its caller.

10/20/2021 41

Zyah AF Msg Forwarding Utility 4

 Overview

« Part 1 (the Zyah AF Msg Forwarding Ultility class)
« Based off inheritance, we can tell whether a Msqg is supported by an Actor.

 We use the Msg’s owning library as a key to create a map of enqueuers that
belong to nested Actors that support that message.

« Part 2 (integrating the class with an AF application)

» Establish which Actor announcements should be forwarded by way of their
owning libraries.

* Route the messages using an override of Receive Message.vi

10/20/2021 42

How 1t Works k.

Initializing the Forwarding Map

* <Initialize Forwarding Map.vi>

AF Msg Forwarding Utility in s [L £ orwarding Utility out

Must be called first.

Establishes which type of map to key to use (paths in this example).

« Paths are the keys.
« Aset of Actor enqueuers are the map values.

Stores the map as a part of the forwarding utility.
This is the first of two must override Vis.

10/20/2021

43

How it Works
Identifying Msgs to Be Forwarded

» <ldentify Msg Payload Owners.vi>

Msg Payload Owners Map LookU\Keys

This is the second and final must override VI.
All Msgs in a given library will be forwarded.
You can change the lookup keys if desired.
The keys of the map are also stored as a set.

10/20/2021

44

How it Works k.
Adding Actors to the Map

« <Add Actor Enqueuer to Map.vi>

 When an Actor is launched, the
Actor wire and its enqueuer is fed
Into this VI where it is checked for
Inheritance against the set of Msg
Payload Owners that were
previously shown.

« Actors that inherit from the given
Msg Payload Owner are added to
the map appropriately.

* This VI should be invoked every
time a nested actor iIs launched.

Must be <Preserve Run-Time Class>

and NOT <To More Specific Class>

10/20/2021 45

How 1t Works k.

Forwarding Msgs

» <Forward Msg Using Map.vi>

Message Priarity (Mormal) [[I32]}

 When a Msg is received by an Actor (in <Receive Message.vi>), it
uses this API to lookup the enqueuers of the Actors that support

the message and forward it along accordingly.

10/20/2021 46

How 1t Works k.

Recap

* <Initialize Forwarding Map.vi>
« Used to set up the type of keys for the map and initialize values.

 Must override.

» <|dentify Msg Payload Owners.vi>

« Used to identify application specific owning libraries containing Msgs to
forward to other nested Actors.

 Must override.

10/20/2021 47

How 1t Works k.

Recap (continued)

« <Add Actor Enqueuer to Map.vi>
« Used when launching a nested Actor to populate the forwarding map.

» <Forward Msg Using Map.vi>
« Used when receiving a Msg to automatically forward to any nested
actors that support it.

10/20/2021

48

How It Integrates
Base Actor Private Data

« The Forwarding Utility must be added to every
actor that could be used to forward Msgs.

* Though not strictly necessary, to avoid duplicated
code, we recommend adding the utility class (as
well as an opt-in flag) to a Base Actor.

 You could put it in your own or inherit it from one Zyah
provides.

e Accessor VIs for each item should also be created
within the Base Actor.

10/20/2021

49

How It Integrates k.
Base Actor API (Protected)

* <Initialize Forwarding Map.vi>

« Specifies which map to use along with which
child instance of the Forwarding Utility and then
calls the VI of the same name from within the
Forwarding Utility.

« Stores the map in the Base Actor’s private data.

« <Launch Nested App Actor.vi> (recommended) —

 Wraps normal <Launch Nested Actor.vi> IEsGE-mloR
functionality with map population functions from 5 =R
the Forwarding Utility. ' |

« Populates “Is Forwarding Actor” parameter.

10/20/2021 50

How It Integrates
Base Actor Override

» <Recelve Message.vi>

 Verifies that the Msg and Actor support
forwarding (not shown).

* If the current actor implements the
message, executes it.

« If the actor does not implement the
message and it's not the root actor,

forwards the message up the Msg tree.

* Otherwise forwards the Msg to all the
supported nested Actors.

10/20/2021

51

Actor Framework:
The Broccoli of LabVIEW

« Steep learning curve

« Challenging to debug

« IDE slowdown

« Refactoring can be painful

« AF messages force tight coupling

« Tooling is lacking for common
operations

« Messaging in large hierarchies
can be painful

10/20/2021

Launching and Routing

Root launches Digital Temperature
Display.

During launch, Root determines Digital
Temperature Display’s parent interfaces.

In this case, Digital Temperature Display
Inherits from the Oven Announcements

Interface.

10/20/2021

53

Launching and Routing A

* Digital Temperature Display’s enqueuer then gets added to
the Forwarding Map.

* When you pass Oven Announcements in as a key, all
Nested Actor enqueuers that inherit from that interface are

returned.

10/20/2021 54

AN
Launching and Routing A

* When Display Proxy receives a Message, it determines the
Message’s owning interface.

* The owning interface Is used as the map key and the
Message Is forwarded to any matching enqueuers.

- 5, —E - B

10/20/2021

55

Launch Diagram %

Root Actor

Display Proxy

Chart Temperature Digital Temperature
Display Display

’ Y

10/20/2021 "" -

56

Traversing the Tree

10/20/2021

Actorin

roller

error out

-]

Chart View

o @ Handle XY Msg.lvclass
i 8" Handle XY Msg.ctl
i @, Send Handle XY.vi

error out

o]

Interlock
=@ Hondexisona I EOT

i 8" Handle XY Msg.ctl

), Send Handle XY.vi

Data

_ T - -

- @ Handle XY l‘v'1sg.|'~.fcla£-5]
i 8" Handle XY Msg.ctl
Send Handle XY.vi

ger

57

Traditional Solutions

 Circumventing the actor tree using
alternate messaging such as user
events, queues, etc.

—Messaging are routed through multiple
transport mechanisms, which can
complicate debugging.

—Code clarity and readability often suffers
with multiple transport mechanisms.

—Competing transport mechanisms
Increases potential for timing/locking
ISsues.

10/20/2021

58

Message Routing %

Root Actor

Display Proxy

Chart Temperature Digital Temperature
Display Display

10/20/2021 59

Zyah AF Msg Forwarding Utility 4

* Interfaces (solution 1) are included out of the box in LabVIEW
2020+,

» Determining interface inheritance and map population (solutions
2 and 3) are wrapped up into the Zyah AF Msg Forwarding
Utility.

 Avallable today via VIPM.

10/20/2021 60

