
Your LabVIEW Code
Is a Work of Art…

…But I Can’t Read It

Darren Nattinger

Chief TSE, NI

Certified LabVIEW Architect

•All of my LabVIEW presentations are available at:

dnatt.org

•Link to this presentation: https://bit.ly/labviewreadability

Before we get started

Download link for ZoomIt

https://bit.ly/labviewreadability
https://learn.microsoft.com/en-us/sysinternals/downloads/zoomit

Prologue

• “List Buildup”
– Hidden Gems in vi.lib

– An End to Brainless LabVIEW Programming

– Ludicrous Ways to Fix Broken LabVIEW Code

– Quick! Drop Your VI Execution Time!

• “Colleague Enrichment”
– Introduction to DQMH

– All About Collection Data Types

• “DNatt Stuff”
– I Find Your Lack of LabVIEW Programming Speed Disturbing

– Don’t Wait for LabVIEW R&D… Implement Your Own LabVIEW Features!

– Improving Your LabVIEW Code with the VI Analyzer

DNatt Presentation Catalysts

https://www.ni.com/hiddengems
https://bit.ly/brainlesslabview
https://bit.ly/ludicrouslabview
https://bit.ly/slowvis
https://bit.ly/dnattdqmhintro
https://bit.ly/dnattcollections
https://bit.ly/labviewspeed
https://bit.ly/dnattlvhooks
https://forums.ni.com/t5/VI-Analyzer-Enthusiasts/Improving-Your-LabVIEW-Code-with-the-VI-Analyzer/m-p/3415352

• “A passing comment I heard during someone else’s presentation that made me mad”

• Extreme LabVIEW Style Showdown – Hunter Smith vs. Tom McQuillan
– GDevCon #4, Glasgow UK 2023

The Catalyst for *This* Presentation

https://www.youtube.com/watch?v=VUACQwXTXzk

“These images are from Darren Nattinjer’s [sic] ‘End to Brainless Programming’, where he’s,
of course, selected the brainless wire color… (ha ha ha)

I will concede that the bottom approach of not passing [unmodified class values] out is the
more technically correct, but at the expense of your code readability.” -- Hunter Smith

The Catalyst for *This* Presentation

(at the
15:00 mark)

The Catalyst for *This* Presentation

•This code is readable?

The Catalyst for *This* Presentation

•This code is pretty.

•This code is readable.

tl;dr of This Whole Presentation

•The most important thing your code can be is functional.
•The 2nd most important thing your code can be is readable.
•…
•The nth most important thing your code can be is pretty.

•Readable code is more important than pretty code.

•We need to talk about readability more than we talk about style.

What is “Readability”?

Readability is the attribute of your code by which a developer can
understand functionality and behavior.

The more readable your code, the more efficient a developer will be
when she augments, troubleshoots, and/or refactors your code.

The “developer” could be someone else, or it could be you.

DevX: Developer Experience

Definition of Code Readability

Isn’t “Readability”
subjective?

DNatt vs. Norm!

•DNatt: “This code is readable”.

•Norm!: “This code is noisy and distracting”.

Dr. T to the Rescue!

•THE GENIUS OF THE “AND”

•DNarm!: “This code is readable,
noisy, and distracting”.

Where Does That Leave Us?
•As we create block diagrams, we need to make continual choices
that maximize readability and minimize distraction.

•Zero distractions, mediocre readability

•Minor distractions, maximum readability

How do I write
readable code?

With every block diagram object you create, ask yourself:

“Is there something I can do to make this code more readable?”

How to Write Readable Code

ABR:

Finally! The Outline of the Presentation!

•Maximize readability in the ways that you:
– Name objects
– Utilize text
– Craft block diagrams

Two Disclaimers

The content in this presentation best applies when:

– Your LabVIEW team members all use the same written language
when developing code.

– Members of your LabVIEW development team are not color blind.

Firehose Incoming

https://bit.ly/labviewreadability
(This slide deck has 74 slides…)

https://bit.ly/labviewreadability

Content Warning

NAMING Objects

Minimize Use of Captions
•Captions break the panel -> diagram mapping for controls/indicators

•Captions on cluster elements destroy readability

•“Caption on panel so label uses less space on the diagram” = 👎
– Remember, we are maximizing readability, not horizontal density

Improve DevX when Using Captions Legitimately

•If you are programmatically manipulating captions for UI controls,
restore them to the label value at the end of execution

•This helps when you are editing the VI after running it

Splitters and Panes

•Splitters are invaluable for developing sophisticated, resizable UIs

Developing with Splitters and Panes

•Splitters and Panes have a suboptimal DevX out of the box.

Name Splitters and Panes
•For multi-pane UIs, take the time to name all your splitters and all your panes
•Use PaneRelief as a convenient naming tool

https://www.vipm.io/package/jki_lib_panerelief/

Name Splitters and Panes
•Code is much more readable with well-named Splitters and Panes

•Use PaneRelief *before* creating Pane references!
– Labels of existing references don’t update ☹

>>

Aside: Kudo this idea
•Disallow changing the label of control references and implicit property/invoke nodes

https://forums.ni.com/t5/LabVIEW-Idea-Exchange/Disallow-changing-the-label-of-control-references-and-implicit/idi-p/3986254

LabVIEW Class Properties
•Class Property Nodes are more readable than Accessor SubVIs

– https://bit.ly/ludicrouslabview

https://bit.ly/ludicrouslabview

LabVIEW Class Properties
•Class Property VIs should only bundle/unbundle class data…
•… until they shouldn’t.

4 of these just bundle
1 of these has an extra bundle

5 of these just unbundle
1 of these does a bunch of extra stuff

LabVIEW Class Properties DevX
•As a user of this API, you shouldn’t care what the Property VIs
are doing under the hood.

•As a debugger of this API, you absolutely do care what the
Property VIs are doing under the hood.

Experimental Idea: Use “+” in Prop Folder Name
•Simple, visual, readable indication that a
class property VI does “extra” stuff

•Try it out, let me know what you think

Utilizing TEXT

Context Help
•The Context Help Window is a great tool!

Context Help
•The Context Help Window is a CRUTCH!

This Photo by Unknown Author is licensed under CC BY-SA-NC

https://brawlhalla.gamepedia.com/The_Last_Crutch
https://creativecommons.org/licenses/by-nc-sa/3.0/

Context Help
• If you are using the Context Help Window, it’s because you need help
reading a block diagram.

• If you are using the Context Help Window, it is because the block diagram
insufficiently conveys its behavior.

•Said another way, the diagram is not readable.
• I’m not saying we should never use Context Help.
• I am saying that the parts of drawing the diagram that we control should
minimize the need to use Context Help.

Graphical Programming
For a graphical language, we obviously use symbols a lot.

Graphical Programming?
For a graphical language, we also use words and letters a lot.

Graphical Programming… Now With Text!
•And that’s a good thing!

So Many Options!
•A completely graphical icon?

•A completely textual icon?

•Somewhere in between?

It’s Time For Everybody’s Favorite Game…

It’s Time For Everybody’s Favorite Game…

How Many People Can I Offend With One Slide?

… are more readable than …

You don’t need Context Help to know what those subVIs are doing.

You don’t need Art Appreciation class to know what those subVIs are doing.

Function Icons
•We can’t change the way built-in functions and subVIs are drawn.

•But we can improve DevX with labels where it makes sense.

For the VIs We Write…

Use text-based banners to relate groups of VIs.

Use text-based icon body text to describe VI functionality.

= Array =

Array?
Matrix?
Grid?
Window?
Building?

1. Ctrl-Space
2. [type text]
3. Ctrl-K

For the *skinny* VIs We Write…

Graphical icons sometimes convey functionality more effectively than text.

For the *skinny* VIs We Write…

…and sometimes they don’t.

CRAFTING Block
Diagrams

Readable Numeric Constants

•The “default” numeric constant types are DBL and I32
• If your numeric constant is any other data type, label it:

•Format hex numerics in the most readable manner:

– Show radix, pad with zeros on left, minimum field width of 2, 4, or 8

– This goes for the front panel as well

– Use the Quick Format Quick Drop Keyboard Shortcut

https://www.vipm.io/package/crossrulz_lib_quick_format/

Readable String Constants

•What is the value of this string constant?

•What is the value of this string constant?

•Follow these general guidelines:
– Empty string:

– String containing only human-readable text:

– Format string containing whitespace:

– String containing only whitespace:

– Hex string (usually for device comms):

– Use the Quick Format Quick Drop Keyboard Shortcut

https://www.vipm.io/package/crossrulz_lib_quick_format/

Readable Path Constants

• I know the VI file name, and that it’s on my C: drive… and not much else:

•Expand the path constant to display the entire path… don’t be afraid to make it
multi-line:

(this goes for relative path values as well)

>>

Readable Cluster Constants

•Which of these cluster constants contains a non-default value?

•Which of these cluster constants contains a non-default value?

•When defining a cluster data type, use Icon View
•When defining a cluster value, use Default View

Readable Array Constants

•How many elements are in this array (and what are their values?):

• If I can only see one element, it better be an empty array.

Readable Array Constants

•Show all elements (and an empty one at the end) if the
array constant can reasonably fit on the containing diagram:

• If displaying all elements isn’t feasible, show as many as
possible, and show the scrollbar:

(Windows 11
scrollbars are
weird)

Readable Class Wires

•A class wire with default appearance tells me nothing:
•

•A customized class wire gives me more information:

“The Blue Wire”
“The Orange Wire”
“The Green Wire”

Make banners match wire colors
to further enhance readability

Readable Error Wires

•An ‘error out’ terminal indicates that a VI or function could return an error:

• If your subVI can’t return an error, don’t add an ‘error out’ terminal to your subVI:

• “But what if I’m using the error wire for serialization?”

Experimental Idea: Error Pass-through on Icon
•Simple, visual, readable indication that
an error wire passes through a subVI

•Try it out, let me know what you think

Readable Reference Wires

•Train-track reference wires are convenient:

•The fact that different reference wires are the same color is inconvenient
•Always position pass-through reference wires at the same height:

•Always position different references at different heights:

Readable UI Code in General

• It’s time we all say goodbye to this pattern:

Bundled Control References Aren’t Readable

•Maybe that subVI is copying a graph… (to the clipboard)?
• Is the subVI messing with anything else on the panel besides the graph?

Unbundled Control References Are… Better?

•Ok, that’s a little better, now we know which control the subVI is acting on
•But there’s still a disconnect between the control and the unbundled reference

Readable and Debuggable UI Code in General

•That subVI is definitely copying the graph to the clipboard
•And not messing with anything else
•And is easy to find when debugging code pertaining to the graph

Yippee Ki-Yay, Mothercluster

•That subVI could be doing motherclusting ANYTHING!
– Seriously… what does that (professionally-developed) icon even mean?

•And it could be doing it to ANY of your motherclusting data!

If You’re a Mothercluster Lover…

•That subVI is processing new data
•That subVI is only modifying ‘Acquired Data’ in the mothercluster, and nothing else

A Quick Word About
Free Labels

None of My Readable Diagrams Had Comments

It’s Time For Everybody’s 2nd Favorite Game…

It’s Time For Everybody’s 2nd Favorite Game…

Can I Possibly Offend More People?

•Free labels should not be used to generally describe the behavior of a diagram.

•That’s what diagrams are for.

•That’s what readable diagrams are for.

When Do Labels Make Sense?
#Bookmarks for code reviews/to-dos/etc.

Describing the non-obvious purpose of a constant value

Citing an external source (website, e.g.)

Explaining non-obvious details of an algorithm

Command-Response.vi

Summary

Summary

•Maximize readability in the ways that you:
– NAME things
– Utilize TEXT
– CONSTRUCT block diagrams

•Don’t be afraid to question “best practices”
– Text on a block diagram is good! And so, so readable.

•Always Be Readabling

bit.ly/labviewreadability

dnatt.org

