Quick! Drop Your VI Execution Time!

General-purpose technigues to speed up your VIs

Darren Nattinger
Principal Engineer, CLA, LabVIEW R&D

(¢ NATIONAL
’ INSTRUMENTS'

Before we get started...

Download a copy of this presentation here:

pbit.ly/slowvis

(¢ NATIONAL
’ INSTRUMENTS'

Outline

- Why I'm talking about this stuff

- Stuff I'm not going to talk about

- Stuff I'm going to talk about

- Real-world demos that show the stuff | talked about

(¢ NATIONAL
’ INSTRUMENTS'

Why am | giving this presentation?

- About once a month, somebody comes to me with a slow VI and asks me to
make it run faster.

- These slow Vis reside in a wide variety of LabVIEW applications.
- ...but are usually of the type “do something with a big chunk of data”.

- Over the years | have accumulated a toolbox of simple, general-purpose
techniques for improving VI execution time.

- | am sharing those techniques with you today.

(¢ NATIONAL
’ INSTRUMENTS'

Stuff I'm not going to talk about

- Desktop Execution Trace Toolkit

- Show Buffer Allocations e T
- Profile Buffer Allocations :

- The coolest LabVIEW feature you’ve never heard of

Performance and Memary...
Show Buffer Allocations...
VI Metrics..,

Find Parallelizable Loops...

Benchmarking techniques

- http://bit.ly/brainlesslabview Whear I
How the LabVIEW compiler works

= google “introduction to the LabVIEW compiler” (with quotes)

= google "LabVIEW compiler under the hood” (with quotes)

Real-Time/FPGA

Build Application (EXE) from V...
uild Application (EXE) from Profile Buffer Allocations...

(¢ NATIONAL
’ INSTRUMENTS'

http://bit.ly/brainlesslabview

Stuff I'm going to talk about

= VI Profiler

- The good, the bad, and the ugly
- VI settings

- Enabled debugging, Priority, Inlining, etc.
- Parallel For Loops
- Programming Patterns for Performance
- Sets and Maps

= lllustrative real-world demos

(¢ NATIONAL
’ INSTRUMENTS'

Disclaimer
- There are times when we have to do silly things to eke out more performance
from our VIs.

- If code readability and maintainability is our #1 goal, we shouldn’t do these
things.

- If code performance is our #1 goal, we may have to.
- Iltems marked as “!” in this presentation denote these situations.

“Make it work, make it right, make it fast.” — Kent Beck

Fabiola De la Cueva
When refactoring code to improve performance on code that works as expected

. . 1. If you don't have existing unit tests, then create unit tests that pass with the
...then make sure it still works. current code. Else, verify that unit tests pass

2. Refactor

3. Verify unit test(s) still pass

‘7 NATIONAL
’ INSTRUMENTS'

VI Profiler

¢ NATIONAL)
) INSTRUMENTS' ni.com

VI Profiler

Official name: “Profile Performance and Memory”
Tools > Profile > Performance and Memory
Has been around forever

Gives information on execution
time of VIs, along with optional
info on memory usage

™

NATIONAL
INSTRUMENTS'

E‘ Profile Performance and Memory - Board Testing - Benefits of Object-Oriented Design.lvproj

[Tiring statistics

[[] Profile memory usage

— [m]

X

Application Instances

[] Timing details []Memory usage W My Computer #
Time unit Size unit
milliseconds w kilobytes Select Application Instances... v
Profile Data
VITime SubVis Time Total Time Project Library A &
Picture to Pixmap.vi "4000.5 0.0 4090.5 3
Unflatten Pixmap.vi 2569.9 0.0 2569.9 3
Flatten Pixrmap.vi 1080 0.0 106.0 3
Test Boards_OBJECTvi 65.3 6981.5 T046.8 3
Board Design.lvclass:Check Image Matches Design.vi 56.1 6902.5 6958.6 Board Design.h b
Test For Square of Colorvi 47.8 6809.5 6857.3 3
Get Image Subset.vi 25.9 2681.6 2707.5 3
FPGA Chip.lvclass:Self Testvi 250 2588.2 2613.2 FPGA Chip.lvel M
Board Design.lvclass:Get Test Namewi 9.5 253 1.9 Board Design.h b
Color to RGB.wvi 6.8 0.0 6.8 M
Coerce Bad Rectwi 5.7 0.0 5.7 3
Assembly Line Image Generator.vi 5.0 24 74 M
Paint tn Nictanre nn Rnard i da nn A0 n Y
>
Stop Save Close Help

VI Profiler — Simple Usage Procedure

- Check ‘Timing statistics’
- Click Start

- Run your code

= Click Snapshot

Interpret Results

‘7 NATIONAL
’ INSTRUMENTS'

Launch Tools > Profile > Performance and Memory

E‘ Profile Performance and Memary - Board Testing - Benefits of Object-Oriented Design.lvproj - O

iming statistics: [[] Profile memory usage

*

Application Instances

[Timing details []Memory usage W My Computer
Time unit Size unit
milliseconds v kilobytes ~ Select Application Instances... v
Profile Data
VITime SubVisTime Total Time # Runs An
Picture to Pixmap.vi 40905 0.0 4090.5 9400 0
Unflatten Pixrmap.vi 2569.9 0.0 2569.9 9400 0
Flatten Pixmap.vi 1080 0.0 106.0 9400 0
Test Boards_OBJECTwi 65.3 6981.5 T046.8 4 1
Board Design.lvclass:Check Image Matches Design.vi 56.1 6902.5 6958.6 600 0
Test For Square of Colorwvi 47.8 6809.5 6857.3 9400 0
Get Image Subset.vi 25.9 2681.6 2707.5 9400 0
FPGA Chip.lvclass:Self Testwvi 25.0 2588.2 2613.2 1200 0
Board Design.lvclass:Get Test Mame.vi 9.5 2.3 e 600 0
Color to RGB.vi 6.8 0.0 6.8 9400 0
Coerce Bad Rectwvi 5.7 0.0 5.7 9400 0
Assembly Line Image Generator.vi 50 24 74 12 0
Print tn Nictanre nn Rnard vi a4q nn 4q 1GnAN nV
>
Stop Snapshot Save Close Help

VI Profiler — The Good

Very low barrier to entry
Very easy to interpret results

Automatically sorts by VI Time

- Sortable columns (but VI Time is
almost always what | want to sort by)

Improved resolution in
LabVIEW 2018 and later

Enabling “Timing statistics” shows
the “# Runs” column

- Useful when deciding if inlining
makes sense

‘7 NATIONAL
’ INSTRUMENTS'

yd

[*] Profile

: [[] Profile memory usage

[Timing details []Memory usage

Time unit Size unit

milliseconds v kilobytes ~ Select Application Instances...
Profile Data
I VI Time ;b Vis Time Total Time # Runs An
Picture to Pixmap.vi . I 4090.5 9400 0
Unflatten Pixrmap.vi 2569.9 0.0 2569.9 9400 0
Flatten Pixmap.vi 1080 0.0 106.0 9400 0
Test Boards_OBJECTwi 65.3 6981.5 T046.8 4 1
Board Design.lvclass:Check Image Matches Design.vi 56.1 6902.5 6958.6 600 0
Test For Square of Colorwvi 47.8 6809.5 6857.3 9400 0
Get Image Subset.vi 25.9 2681.6 2707.5 9400 0
FPGA Chip.lvclass:Self Testwvi 25.0 2588.2 2613.2 1200 0
Board Design.lvclass:Get Test Mame.vi 9.5 2.3 e 600 0
Color to RGB.vi 6.8 0.0 6.8 9400 0
Coerce Bad Rectwvi 5.7 0.0 5.7 9400 0
Assembly Line Image Generator.vi 50 24 74 12 0
Print tn Nictanre nn Rnard vi a4q nn 4q 1GnAN nV
£ >
Stop Snapshot Save Close Help

VI Profiler — The Bad

- C-based feature
- No G extensions ®

= Inline VIs do not show up
- Lots of mostly distracting info

‘7 NATIONAL
’ INSTRUMENTS'

E‘ Profile Performance and Memary - Board Testing - Benefits of Object-Oriented Design.lvproj - O X

iming statistics

Profile Data

Picture to Pixmap.vi

Unflatten Pixrmap.vi

Flatten Pixmap.vi

Test Boards_OBJECT.wvi

Board Design.lvclass:Check Image Matches Design.vi
Test For Square of Colorwvi

Get Image Subset.vi

FPGA Chip.lvclass:Self Testvi

Board Design.lvclass:Get Test Mame.vi
Color to RGB.vi

Coerce Bad Rectwvi

Assembly Line Image Generator.vi

Dnint tn Nictanre nn Rnard wi

VI Time
"4090.5
2569.9
106.0
65.3
56.1
478
259
25.0
9.5
6.2
5.7
5.0
a4

Stop Snapshot

Save Close Help

VI Profiler — The Ugly

- Absolute time values are often unexpected

- A VI that takes 10 seconds to run might show VI Time’ values that sum to something
completely different

= One reason is that parallel operations are summed
- A VI with two parallel loops that run within 1 second will show a profile time of 2 seconds
- Another reason is because “LabVIEW-friendly sleep time” is not included
- LabVIEW-friendly sleep: Wait functions, Event Structure, TCP, Queues
- LabVIEW un-friendly sleep: OS-level (e.g. driver functions, DLL calls)
- Use VI Time value as a relative metric
= Focus on the big numbers
- Ignore the small numbers

= You’re making progress if the big numbers get smaller and your VI execution time
decreases

‘7 NATIONAL
’ INSTRUMENTS'

VI Profiler — What about Memory?

- The VI Profiler gives memory usage info on a per-VI basis

- Profile Buffer Allocations gives memory usage info on a per-node basis

= (most of the time)

E Profile Buffer Allocations

- a X B Profile Performance and Memory - Board Testing - Benefits of Object-Oriented Design.lvproj - O x
File Help e . X
[] Timing statistics [] Prefile memory usage Application Instances
Application Instances All Maximum buffers to display| 100 | Size unit kilobytes e [T € = [ey e B My Computer &
Time unit Size unit
Buffer 1D | VI Name Max Bytes | Avg Bytes | Min Bytes | #Runs milliseconds ~ kilobytes Select Application Instances... v
29 Test Boards_OBJECTwi 67,79k 67.79k 67.79k 1 Profile Dats
36 Test Boards_OBJECTwi 67.788k 67.788k 67.788k 1 Avg Bytes Min Bytes Max Bytes Awvg Blocks Min Blocks Max Blod
Picture to Pixmap.vi 140.22k 7283k 14057k 3 3 4
Magic Signal Filter.lvcla Unflatten Pixmap vi 5248k 16848k 4 4 4
e —————ra — e—— er—
R Flatten Pixmap.vi 13.70k 12 12 12
N7 s ey G Board Design.vclass:Check Image Matches D 7751k 15 15 18
6776k - Test Boards_OBJECTwi 204772k 607 607 607
) [l o T 1
75k I Toral 1Y Test For Square of Color.vi 14250k 6 6 §
. Get Image Subsetvi 173.68k 3 3 2
; 67.74k | Board Design.lvclass:Get Test Mame.wvi 6.47k 5 5 5
= Get ID Number.vi 1.99k o o 0
67.73k FPGA Chip.lvclass:Self Test.vi 7397k 73Ok TA0lk 2 2 2
67.72k- Point to Distance on Board.vi 2.34k 2.34k 2.34k]] 0
6 EI g‘lg Component.lvclass:Get Row and Column.vi 3.27k 3.27k 3.27k o o 0
Time (s) Calartn RGR v 2071 207k 2071 2 2 2
< >
Threshold (B)| 1024k |3 Start Help Stop Save Close Help

‘7 NATIONAL
’ INSTRUMENTS'

VI Profiler — More Granular Information

- Use Edit > Create SubVI to create temporary subVIs of suspect code (!)
- Workaround for the lack of per-node execution time

- These subVIs will appear in the VI Profiler to help you narrow down issues

Profile Data
YITime 5SubVisTime Total Time # Runs
Waveform Time to Date Time String.vi 80145 0.0 2014.5 2500000
{ WriteToCSW v 57199 30145 13734.4 1
VS.
Profile Data
VITime Sub Vs Time Total Time # Runs
Waveform Time to Date Time String.vi 81607 0.0 8160.7 2500000
Untitled 3 (SubVT) 48037 81607 12964.4 25
Untitled 1 (SubVT) 13748 0.0 1374.8 25
Untitled 2 (SubVT) 353.3 0.0 353.3 25
WriteToCSV.vi 194.5 14692.6 14887.1 1

‘7 NATIONAL
’ INSTRUMENTS'

VI Settings

¢ NATIONAL)
) INSTRUMENTS' ni.com

VI Settings

= Inline Vs that run a lot
- Removes subVI overhead

- Opens up potential optimizations when subVI boundaries are removed
- Dead code elimination, Constant folding, etc.

- Don’t worry about Priority or
Preferred Execution System

- Save copies of vi.lib Vis to inline
and optimize them (!)
- Give them a different icon
- Document the caller VI

‘7 NATIONAL
’ INSTRUMENTS'

E‘ VI Properties

Category Execution ~

[Allow debugging Priority

Reentrancy normal priority -

(C) Non-reentrant execution Preferred Execution System

. same as caller ~
(®) Shared clone reentrant execution

(O Preallocated clone reentrant execution [JEnable automatic error handling

Reentrancy settings affect memory usage, call B e
overhead, jitter, and state maintained within the
V1. Display Context help for guidance with
selecting the best setting for your use case.

O Suspend when called
[Clear indicators when called

Auto handle menus at launch

I M Inline subVl inte calling Vls I

Help

VI Settings — When to apply them

= Inline VIs don’t show up in the VI Profiler ®
- Mark as inline after you're done profiling to get that last speed boost
- Turn off debugging on non-inline Vls after you're done profiling

(¢ NATIONAL
’ INSTRUMENTS'

Parallel For Loops

¢ NATIONAL)
) INSTRUMENTS' ni.com

Parallel For Loops

- Easiest way to speed up existing For Loop code
- The first thing | look for when | get a “slow VI”

- Parallelize the outer-most loop
- Don’t parallelize nested loops

= (with rare exception) -)
= VI Wl” become bl’Oken |f the |00p : [+] For Loop Iteration Parallelism
Cannot be para”ellzed [] Enable loop iteration parallelism
Number of generated parallel loop instances
8

lteration partiticning schedule

® Automatically partition iterations
O Specify partitioning with chunk size (C) terminal

[] Allow debugging

(Forces iterations to execute sequentially)

@ Click the Help button to read about performance considerations,

Cancel Help

‘7 NATIONAL
’ INSTRUMENTS'

Parallel For Loops — How many loop instances?

- Don’t wire ‘P’ (see guidance below)
- ‘Number of generated parallel loop instances’ specifies the maximum number
of parallel instances the LabVIEW compiler will generate

- “Just use 8’
(unless you know for sure you’ll need more) -)

1 Use Value in d|a|og / For Loop lteration Parallelism X
0 (unwired): Use the most available logical processors & Enable loop iteration paraliclism

(up to COﬂfIgUI’Ed Value) I:umberi)f generated parallel Ioopinstancesl
1 or greater: Use wired value (up to configured value)

CPU Information :
ﬁoﬁ is the same as
@

lteration partiticning schedule

® Automatically partition iterations
O Specify partitioning with chunk size (C) terminal

[] Allow debugging

(Forces iterations to execute sequentially)

@ Click the Help button to read about performance considerations,

Cancel Help

‘7 NATIONAL
’ INSTRUMENTS'

Programming Patterns for Performance

¢ NATIONAL)
) INSTRUMENTS' ni.com

Programming Patterns for Performance part 1

- Control and Indicator terminals always on the top-level diagram (of subVIs)
- Remove decision points from diagrams if you can

- Like error case structures
- Basic string primitives vs. “newer” stuff like JSON (!)

- Consolidate class accessors in tight loops (!)
- ...or get the data out of classes before the tight loop starts (!)

(¢ NATIONAL
’ INSTRUMENTS'

Programming Patterns for Performance part 2

- Modifying cluster and array elements
- If you need the original element value, use In Place Element Structure
- If you don’t, use Bundle By Name or Replace Array Element
- NEVER delete/index from array then rebuild
- If you see multiple branches of a (large) array wire, you *may* need a DVR
- Or if you have the large array in a promiscuous functional global variable
- When refactoring for performance, DVRs should be a last resort

(¢ NATIONAL
’ INSTRUMENTS'

Sets and Maps

¢ NATIONAL)
) INSTRUMENTS' ni.com

Good/Gooder/Better/Betterer/Best/Bester

- Good — Search 1D Array

- Gooder — Search Unsorted 1D Array VIM in vi.lib/Array in LabVIEW 2019 and later
- Better — Custom binary search

- Betterer — Search Sorted 1D Array VIM in vi.lib/Array in LabVIEW 2019 and later
- Best — Variant Attributes

- Bester — Sets and Maps in LabVIEW 2019 and later

(¢ NATIONAL
’ INSTRUMENTS'

Performance Benefits of Maps

Maps eliminate the data type conversion required to store variant attribute keys as
strings and values as variants. Plus, they’re an actual APl and not a hack. ©

Variant attributes are comparably performant if your keys are already strings and your
values are already variants. (!)

If you find yourself dropping a Search 1D Array or a Build Array, ask yourself if you should
be using Sets or Maps instead.

(¢ NATIONAL
’ INSTRUMENTS'

Real-world Demos

¢ NATIONAL)
) INSTRUMENTS' ni.com

Thanks for attending!

bit.ly/slowvis

Parallelize your loops. Inline your subViIs. Profile your VIs. Write fast code.

¢ NATIONAL)
’ INSTRUMENTS' ni.com

