

How to Leave a Legacy Without
Leaving Legacy Software

Future Proofing Your Software

CLA Summit Americas
09/25/2019

Agenda
●  What is “Legacy Software”?

●  I: Design Phase, decisions that improve maintainability

●  II: Maintenance Phase, what causes software to grow more complex and how to avoid it

○  Specific examples of how “good” code goes “bad”

●  III: Successful Teams, non-technical related aspects of legacy

●  Conclusions

Takeaway Goals
●  Open the discussion on what makes code “legacy code” and how it gets created.

●  Reflect on changes we can make everyday to improve the quality of our codebases.

Key sources of inspiration for this presentation

●  “Working Effectively with Legacy Code” - Michael Feathers

●  Tech Done Right Podcast: “Avoiding Legacy Code with Michael Feathers”

●  Martin Fowler on Refactoring and Technical Debt

What is Legacy Software?
 There are many working definitions of what legacy software is. They
are never associated with positive qualities.

Just ask some software developers what “Legacy” means to them..

It’s Old

It is any code base not

covered by unit tests

It uses deprecated
technologies

The author has left the
company and nobody
understands how it works.

It’s code you’d rather
replace than work with

Gradual modifications caused well-
written code to evolve into a complex
monster

It’s poorly written, not
modular and not well
factored.

Common Denominator

Legacy software is software that other
developers are afraid to change
●  Changing the software presents a high risk due to a variety of factors:

○  Not well designed or maintained

○  Not unit tested

○  The code is too complex

○  Not properly documented

○  Technologies or tools are deprecated

○  … <Insert your own complaints here>

How can we write software so that
other developers are not afraid
to make changes later?

It is not just about the initial design

I: Design Phase

What proactive design decisions can we make at the beginning of a
project to improve ease of maintainability in the future?

S L D

O I

Keep the Design Simple
●  YAGNI!

Sometimes flexibility/scalability is sacrificed for maintainability

●  Design for ease of maintainability first

Path length to perform an operation is one measure of complexity

Long path = Complex code (too many layers increases complexity)

You Aren’t
Gonna Need It!

Sometimes “Easy” is better than “Right”

Manage Shared Resources Appropriately
●  Proper management of shared resources will prevent unintended coupling

○  Typedefs

■  Only belong as class members if exclusive to class

■  Scope internal typedefs as protected or private

■  Put all other typedefs in a common/shared location.

○  Interlocks, Path Management, Calibration, Etc.

■  Prevent dependencies between otherwise unrelated subsystems

■  May require a dedicated arbitrator

Two classes which own almost the same data structure.. only ordering in
the cluster is different. This can cause a big issue at the class boundary.

Add Unit Testing Early On

●  Tests are a safety net for catching unintentional changes in code behavior

○  Unit tests reduce fear for developers to make changes

○  Easy to understand if changes impacted other behavior

●  It is painful to add test coverage in later after initial development

○  Factor this into the budget

○  Code that is designed to be testable is often better code

End to End

Integration Test

Unit Test

Michael Feathers: “legacy code is simply code without tests”

Create High Level Documentation

●  Roadmap should include

○  System level diagram (hardware,

physical connections, etc.)

○  High level software diagram

(components and relationships

between them)

●  For classes create a VI tree which

shows a simple example of how to

exercise the API

.. I have no memory of this place

Create Documentation
in the Code
 ●  Do not assume your code is so clear that

it is self documenting, it is not.

●  Write comments for another developer

○  Future you will also appreciate it!

●  Document code where you will see it and

keep it updated

○  On the Block Diagram

Put diagrams in

your code if it is

complex!

Summary Slide:

What we can do at the beginning of a project to avoid a
bad legacy later on

●  Keep the design simple

●  Manage shared resources appropriately

●  Plan on and add unit testing early

●  Create documentation

II: Maintenance Phase

What causes software to get “worse” over the course of its life cycle and
how can we prevent that from happening?

Code naturally becomes more complex as changes are made
Software Entropy

●  Code complexity increases as changes are made and features are added unless it is actively managed.

●  Increasing complexity increases development effort (and cost) to make further changes.

“Software becomes like biology over time, look at a sprawling

forest or jungle and get that feeling looking at a codebase” -

Michael Feathers

Refactoring can reduce software complexity

Boy Scout Rule: always leave the code behind
in a better state than you found it.

●  Also known as “opportunistic” refactoring. Living by this rule improves the quality of your code base

over time.

○  Preparatory refactoring

○  Code improvements in the nearby vicinity

●  Our code bases should get better over time instead of worse if

 we make refactoring part of our daily work!

“Always leave the code you’re editing a
little better than you found it”

-  Robert C. Martin

The cumulative effects of short term thinking

Technical Debt
●  Metaphor introduced by Ward Cunningham back in the 1990s

●  Technical debt = future development time that is “borrowed” when shortcuts are taken to deliver

quickly

How can we manage technical debt?

●  Document technical debt

○  When decisions are made to incur the debt, or when debt is discovered

●  Plan for and pay back technical debt

○  Accrual is sometimes unavoidable (time to market pressures, unrealistic deadlines)

○  Allocate resources to cleanup and refactor code after a delivery

●  Track technical debt and communicate code readiness to stakeholders

○  Consequences are often unclear to those responsible for the decision

○  “Code readiness” should be a regular part of the conversation

When GOOD code goes
BAD

Specific examples of how code quality degrades and some prevention
strategies.

II: Maintenance Phase

When GOOD code goes BAD

Maintaining too many branches

●  Feature branches accrue technical debt

○  Merges take time to resolve and can introduce bugs

○  More time open => more technical debt

○  Opportunistic refactoring is difficult with parallel development

●  Tips for managing parallel changes

○  Split into smaller repositories (monolith -> microservices)

○  Avoid having feature branches open for too long

○  Document changes and allocate time for merges

○  Communicate if merge conflicts occur

When GOOD code goes BAD

Unintended Coupling
 ●  Developers working within a module may

create bad dependencies without realizing

it

●  Your UML diagram is a Live Document!

Revise and Review it often.

○  The UML should reflect the

relationships in the current software

○  Whose responsibility is it to update the

UML?

When GOOD code goes BAD

Leaving Dead Code in your codebase
 ●  Dead code increases code complexity

○  It takes more time to understand the code

●  Remove dead code!

○  Code in your disabled structure

○  Unreachable Code

○  Unused Private Methods or Typedefs

○  Dead VIs on disk (not loaded in memory)

○  Unused protected or public methods & types

Warning! This VI is marked for
deprecation

When GOOD code goes BAD

Evolution of the God Class

●  Anti-pattern violates the single responsibility principle

○  .. Each module should be responsible for a single

functionality.. all services should be narrowly aligned with that

responsibility..

●  Classes start small and grow over many feature requests

Proactive Solution:

●  Features that do not align with class responsibility go in a new class.

Retroactive Solution:

●  Large classes can be split into several smaller classes when bloating

When GOOD code goes BAD

Sacrificing maintainability for performance

●  One of the reasons our code can get less readable and maintainable over time = performance

optimization

○  At a minimum the block diagram may need

more explanation

○  At the extreme, whole layers or dynamic

 linkage must be removed entirely

●  Add more detailed documentation

 after optimizing

i.e. replacing a linear search with LUTs requires

more context and documentation for variant

attribute contents

Summary Slide

What we can do throughout the software lifecycle to
avoid it becoming legacy

●  Refactor as part of your ongoing and daily routine

●  Document and plan for paying back technical debt

●  Keep your UML up-to-date

●  Remove dead code

●  Document carefully when optimizing code

III: Successful Teams

Non-technical related contributions to legacy software

Melvin Conway 1967

Conway’s Law

Team A

Team B

Team C

A product produced by three
teams will have 3 distinct
parts.

●  “Organizations which design systems ... are constrained to produce designs which are copies of

the communication structures of these organizations”

●  In other words: A system architecture and the interfaces between components reflect

communication and organization of the teams that developed the system.

●  Improve communication between groups

●  Organize development teams to complement the architecture

●  Create smaller services/groups with strong ties

Losing Context

Institutional memory

●  There is a reason WHY someone implemented the legacy code that way

○  Sometimes we refer to this as tribal knowledge of a code base

○  When people leave a company the context for design choices and history is lost

●  What can we do to improve institutional memory?

○  Better documentation & creation of knowledge bases

■  Document high-level project details as well - what we did and WHY

■  Wikis, Creation of a short video library

○  Mentoring + Training

■  For continuity don’t have one developer as the sole owner of all the design

and details of one project

Creating a Culture for Success

Successful Teams

●  Strive for continuous improvement

○  Aim to incrementally make improvements to process and be open to trying new things and

adjusting based on results

●  Create a culture of doing things “right”

○  Encourage long-term thinking about what is best for the code base.

○  A culture that values quality will also encourage more pride in ownership over code-> leads to

better maintenance.

○  Create clear code quality standards

Summary Slide

What can we do in our business and team
culture to avoid a bad legacy

●  Organize your team to compliment your architecture

●  Improve institutional memory retention by documenting context

●  Create a team culture of doing things properly

Key Takeaways

Let’s make a better legacy!!

Key Takeaways
 ●  Active and continuous effort is required to improve our legacy, but it can be done!

○  Prioritize maintainability in the initial design

○  Continuously work to maintain software throughout its lifecycle

■  Refactor as part of the normal workflow

○  Create a culture which values and prioritizes long term outcomes

■  Communicate and manage technical debt

○  Strive for incremental improvement

Resources

Resources

●  Tech Done Right Podcast: “Avoiding Legacy Code with Michael Feathers”

●  Software Entropy Wikipedia on Software Entropy

●  Refactoring large classes refactoring guru

●  Legacy Monster Graphic Fernando Cejas: Technical Debt Guru Level Unlocked

Thanks!

