
Modern Development
Workflows in
LabVIEW

Greg Richardson
Distinguished Engineer and
 LabVIEW Product Architect
NI Product R&D

Margaret Hamilton
First programmer hired
for Apollo module
flight software

"I began to use the term 'software
engineering' to distinguish it from
hardware and other kinds of
engineering, yet treat each type of
engineering as part of the overall
systems engineering process."

#ourgiantsarefemale

>32 years in LabVIEW R&D

App
Builder

Run Time
Engine

DLL
Builder

lvlib

SuperSecretPrivateSpecialStuff=true
WindowsLongPaths=true (LV2021SP1)

DDE

Post-commit validation
per change/

batched/scheduled
Local dev

per worktree
Dev machine

setup Agent setup

Get source

Modify

Build

Get
dependencies

Validate
Test

Get
dependencies

Export
creation

Build

Get source

Convention
validation

Pre-commit validation
per change

Get
dependencies

Code
review

Build

Get source

Convention
validation

Test

Elements of modern development workflows

Machine Setup

• How much should be in base image vs
dynamic?

– Frequency of version changes

– Number of versions in active support

– Install time

• Which OS?

– LabVIEW cannot cross-build between
desktop OSs or bitness

• Tooling approaches

– Manual/custom scripts

– JKI Dragon – NIPM (including LV) and
VIPM

– Virtual machines – alleviates install time

– Containers – lighter weight than VMs

• LabVIEW activation

– Can be automated

– CI/CD license

Dev machine
setup Agent setup

https://forums.ni.com/t5/Continuous-Integration/LabVIEW-Continuous-Integration-License/td-p/4162927/highlight/true/page/2
https://www.ni.com/en/support/documentation/supplemental/21/labview-licensing-for-continuous-integration-and-continuous-deve.html

Source Control

• Frequent, small commits

• All source should use “Separate compiled code”

• Set a “Save version” in all projects

• Avoid merging VIs

– Modularity: isolate concepts

– Small VIs

– Communication

• Don’t put built output into SCC

Get source Code
review

Backup

History

Release mgt

Code review

Source Control

Mainline branching model

Get source

main
release2 patch

release1

Code Review

• Interactive diff with author

• Interactive diff without author

• Generated diff report

– Linked from review tooling

– Directly in review tooling

Multiple approaches

• Manually generate

• Automated
– SCCSup Compare Two VIs.vi

• [App]User Interaction>>Compare VIs XML

– Picture generation (Get Image or Print)

– Post to review tooling

Tooling for diff reports

Code
review

Dependency Management

• Dependency list is source

– Dependency content is not source

• Artifact repository

– NIPM/VIPM

• JKI Dragon

– JFrog Artifactory

Files not authored by your team & files built from your team’s source

Get
dependencies

Export
creation

Dependency Locations

• LVAddons.CustomLocation (2022Q3)

– Overrides c:\Program Files\NI\LVAddons

• LVAddons.AdditionalLocations (2024Q1)

– ‘;’ delimited list of paths

– Overlays the addon root

Avoid cross contamination of dependencies between builds

• Put dependencies in an easily cleaned location

Don’t assume all machines have the same absolute paths

• Load dependencies from symbolic paths

• “TargetClass”.LibraryPaths (2021SP1)

– Overlays the LabVIEW directory

– Name varies by target type

• LocalHost.LibraryPaths

• NI.RT.LINUX.PXI.LibraryPaths

• NI.RT.CDAQ.Linux.LibraryPaths

Get
dependenciesBuild

Build Output Locations

• Additional LVAddon location

– LVAddons.CustomLocation=c:\Addons
– LVAddons.AdditionalLocations=c:\Addons

• Create c:\Addons\PPLs\1\lvaddoninfo.json

• Build to c:\Addons\PPLs\1\user.lib

Instead of DNatt’s c:\PPLs, build and install to custom <userlib>

• Extend with platform/bitness

– c:\Addons\PPLs\1\Targets\NI\RT\user.lib

(Starting in LV 2023 Q3)

– c:\Addons\PPLs\1\Targets\win32\user.lib

– c:\Addons\PPLs\1\Targets\win64\user.lib

– c:\Addons\PPLs\1\Targets\linux\user.lib

Get
dependenciesBuild

https://www.youtube.com/watch?v=HKcEYkksW_o

Build Output Locations (alt)

• Different paths

– LocalHost.LibraryPaths=c:\PPLs\win64
– NI.RT.LINUX.PXI.LibraryPaths=c:\PPLs\RT
– NI.RT.CDAQ.Linux.LibraryPaths=c:\PPLs\RT

“TargetClass”.LibraryPaths

• Single path with target directories

– c:\PPLs\Targets\NI\RT\user.lib

(Starting in LV 2023 Q3)

– c:\PPLs\Targets\win32\user.lib

– c:\PPLs\Targets\win64\user.lib

– c:\PPLs\Targets\linux\user.lib

Get
dependenciesBuild

Convention
validationStatic Analysis

• Editor version

• Source only

• Broken VIs

• Connector patterns

• VI complexity

What to enforce?

• VI Analyzer

– Runs VI-based rules

– Broad abilities

• pylabview

– Parses LV file formats

– Limited but fast

Tooling

https://github.com/mefistotelis/pylabview

TestTesting

• Caraya

• NI Unit Test Framework

• VI Tester

• InstaCoverage

• AST Unit Tester

Avoid building your own framework

Automation mechanism

• Named operations stored in predefined
location

– Class based with per operation help

• Writes stdout at end

LabVIEW CLI

• VI path provided as argument

– Loose VI based

• Writes stdout incrementally

G CLI

Use a CLI

– Provide access to stderr/stdout

– Can separate operation lifetime from LabVIEW lifetime

– Designed for headless operation

BuildConvention
validation Test

Questions or Comments?

