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"I began to use the term 'software 
engineering' to distinguish it from 
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engineering, yet treat each type of 
engineering as part of the overall 
systems engineering process."
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Machine Setup

• How much should be in base image vs 
dynamic?

– Frequency of version changes

– Number of versions in active support

– Install time

• Which OS?

– LabVIEW cannot cross-build between
desktop OSs or bitness

• Tooling approaches

– Manual/custom scripts

– JKI Dragon – NIPM (including LV) and 
VIPM

– Virtual machines – alleviates install time

– Containers – lighter weight than VMs

• LabVIEW activation

– Can be automated

– CI/CD license

Dev machine 
setup Agent setup

https://forums.ni.com/t5/Continuous-Integration/LabVIEW-Continuous-Integration-License/td-p/4162927/highlight/true/page/2
https://www.ni.com/en/support/documentation/supplemental/21/labview-licensing-for-continuous-integration-and-continuous-deve.html


Source Control

• Frequent, small commits

• All source should use “Separate compiled code”

• Set a “Save version” in all projects

• Avoid merging VIs

– Modularity: isolate concepts

– Small VIs

– Communication

• Don’t put built output into SCC
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Source Control

Mainline branching model

Get source

main
release2 patch

release1



Code Review

• Interactive diff with author

• Interactive diff without author

• Generated diff report

– Linked from review tooling

– Directly in review tooling

Multiple approaches

• Manually generate

• Automated
– SCCSup Compare Two VIs.vi

• [App]User Interaction>>Compare VIs XML

– Picture generation (Get Image or Print)

– Post to review tooling

Tooling for diff reports

Code 
review



Dependency Management

• Dependency list is source

– Dependency content is not source

• Artifact repository

– NIPM/VIPM

• JKI Dragon

– JFrog Artifactory

Files not authored by your team & files built from your team’s source
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Dependency Locations

• LVAddons.CustomLocation (2022Q3)

– Overrides c:\Program Files\NI\LVAddons

• LVAddons.AdditionalLocations (2024Q1)

– ‘;’ delimited list of paths

– Overlays the addon root

Avoid cross contamination of dependencies between builds

• Put dependencies in an easily cleaned location

Don’t assume all machines have the same absolute paths

• Load dependencies from symbolic paths

• “TargetClass”.LibraryPaths (2021SP1)

– Overlays the LabVIEW directory

– Name varies by target type

• LocalHost.LibraryPaths

• NI.RT.LINUX.PXI.LibraryPaths

• NI.RT.CDAQ.Linux.LibraryPaths
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Build Output Locations

• Additional LVAddon location

– LVAddons.CustomLocation=c:\Addons
– LVAddons.AdditionalLocations=c:\Addons

• Create c:\Addons\PPLs\1\lvaddoninfo.json

• Build to c:\Addons\PPLs\1\user.lib

Instead of DNatt’s c:\PPLs, build and install to custom <userlib>

• Extend with platform/bitness

– c:\Addons\PPLs\1\Targets\NI\RT\user.lib

(Starting in LV 2023 Q3)

– c:\Addons\PPLs\1\Targets\win32\user.lib

– c:\Addons\PPLs\1\Targets\win64\user.lib

– c:\Addons\PPLs\1\Targets\linux\user.lib

Get 
dependenciesBuild

https://www.youtube.com/watch?v=HKcEYkksW_o


Build Output Locations (alt)

• Different paths

– LocalHost.LibraryPaths=c:\PPLs\win64
– NI.RT.LINUX.PXI.LibraryPaths=c:\PPLs\RT
– NI.RT.CDAQ.Linux.LibraryPaths=c:\PPLs\RT

“TargetClass”.LibraryPaths

• Single path with target directories

– c:\PPLs\Targets\NI\RT\user.lib

(Starting in LV 2023 Q3)

– c:\PPLs\Targets\win32\user.lib

– c:\PPLs\Targets\win64\user.lib

– c:\PPLs\Targets\linux\user.lib
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Convention 
validationStatic Analysis

• Editor version

• Source only

• Broken VIs

• Connector patterns

• VI complexity

What to enforce?

• VI Analyzer

– Runs VI-based rules

– Broad abilities

• pylabview

– Parses LV file formats

– Limited but fast

Tooling

https://github.com/mefistotelis/pylabview


TestTesting

• Caraya

• NI Unit Test Framework

• VI Tester

• InstaCoverage

• AST Unit Tester

Avoid building your own framework



Automation mechanism

• Named operations stored in predefined 
location

– Class based with per operation help

• Writes stdout at end

LabVIEW CLI

• VI path provided as argument

– Loose VI based

• Writes stdout incrementally

G CLI

Use a CLI

– Provide access to stderr/stdout

– Can separate operation lifetime from LabVIEW lifetime

– Designed for headless operation

BuildConvention 
validation Test



Questions or Comments?


