
ni.com

Putting a Brain
at the Heart of DQMH

ni.com

Norm thinks state is EVERYTHING.

DNatt could take it or leave it.

#MakeQMHGreatAgain

Secretary of State
vs.
Enemy of the State

Norm Kirchner, CLA, NI Darren Nattinger, CLA, NI

Chief TSE TLB’ Fanatic Principal TSE DQMH Zealot

ni.com

Presentation Goal

To improve the way we think about and design our QMH-based

LabVIEW programs in two ways:

1. Understand Norm’s ever-present complaint about traditional QMH

program flow and how it might affect your applications

2. Understand the QMH Prime(’) design (even if you don’t use it)

3. If all else fails…to entertain

ni.com

Agenda
• Presentation goal

• What is “state”, exactly?

• Problem statement

• Norm’s solution

• DNatt’s counterpoint

• Norm’s counter-counter point

• Conclusion

ni.com

Before we get started:

‘Norman-clature’ & 'Natt-onyms'

@0-5

ni.com

“Clear as Chocolate Milk”

~Scott Menjoulet

State ~= Mode

State != State Data

Actions = Messages ~= Requests

Actions & Message != State

Do = Action & Message-ish

Brain(s) = State Machine

ni.com

QMH-based LabVIEW program?

Producer/Consumer

NI QMH

DQMH

Actor Framework

TLB, TLB Prime, TLB` 2.0, TLB Full Tilde

JKI State Machine

…

Pretty much everything!

For the purposes of this presentation, a

“QMH-based LabVIEW program” is any

pattern or framework that uses a queue or a

queue-like mechanism to execute a series

of commands from one iteration of a loop to

the next.

ni.com

A quick aside on Template Selection

• This presentation is NOT a “my framework is better than yours” presentation

• Lots of people have been successful with lots of different frameworks

• DQMH comes naturally to Fabiola, Matthias, Olivier, DNatt... and that’s ok

• Actor Framework comes naturally to Stephen, Allen, Derek, Casey… and that’s ok

• TLB’ comes naturally to Norm and … , and that’s ok

ni.com

What is Top-Level Baseline Prime? (TLB`)

▪ QMH template (baseline) with a bunch of extra design considerations to
aid in 'top level application' creation

▪ With additional explicit state machine (the prime directive) to functionally
contain flow logic and authority over program behavior

• Addresses multitude of common issues by recommending certain design
patterns/methods

• “Sophisticated stateful trigger response mechanism with a
shitload of white-space” --DNatt

@5-5

ni.com

What is DQMH?

• Event-based framework for LabVIEW application development

• Free download on the NI Tools Network

• Maintained by the DQMH Consortium (dqmh.org)

• Built-in productivity tools to decrease development time

• Calling code sends “requests” to DQMH modules

• DQMH modules “broadcast” information to any interested party

• External communication to/from DQMH modules implemented via User Events

• Internal communication within DQMH module implemented via QMH

• “Ridiculously ‘tool rich’ QMH that fails to solve the big issue & thinks you’ll to fit code into 550x380
pixels” ~,~ NJKirchner

ni.com

What is “state”?

@5-5

ni.com

The iPhone is not a phone.

It’s a personal internet connectivity device that is used very occasionally as a phone.

osxdaily.com

ni.com

The ‘Simple State Machine’ is not a state machine.

We refer to that enum as the “state” in a simple state machine. But really, it’s more

like the “next command to run”. So the “Simple State Machine” is really more of a

“Single Message Handler”… it can only handle one message (command) at a time.

ni.com

QMH case structure cases are not ‘States’

ni.com

“your state machine has Do Do all over it”

ni.com

Better definition of state

A discrete mode of a given module which classifies

specific behavior to Stimulus and State Data

• State of ‘Being’

• All the –ing’s

• Mode of the program

• Visual indications

• Functionally contained
behaviors/responses

• Discrete brains

Example: You could say “I am…”

• Idle(ing)

• Connected

• Monitoring

• Logging

• Shutting Down

• Handling Error

ni.com

ni.com

Problem Statement

@10-5

ni.com

ni.com

All but the most simplistic of QMH modules

• will suffer bugs

• have difficulty debugging

• implement poor ‘fixes’ or workarounds

Due to no Stateful and Explicit Flow Control

Problem Statement

Problems with traditional QMH program flow

ni.com

Your Flow Stinks If…

• “Happy Dancing” on a button is

bad

• Understanding program operation

is not obvious from the code

• Code controlling flow is ‘mushed’

together with ‘do’ code

• Preview Q or Flush Q is used

• You spent no time intentionally

developing it

ni.com

Can you spot the bugs?

ni.com

Performing a specific action and making
choices of what to do next are categorically
different.

Breaking SOLID & SMoRES
*Single Responsibility Principle
*Modularity (Functional Containment)

ni.com

Program flow varies based on ‘mode of program’

State nomenclature is a natural self declarative

method of defining modal flows

Example: Your Own Life

You behave differently to different

‘Requests’ based on ‘State’ and ‘State Data’

Request: “Change my Poopy Pants”

State: Daddy-ing

Response: Break out the wipes and nose

clip

State: Bachelor Party-ing

Response: Push friend out of car near a gas

station

ni.com

How much do you care about state & flow?

• TLB’ elevates State and Flow to First Class Citizenship

• State is a critical component of design

• Majority of design time is spent thinking about how program should flow

• DQMH minimizes stateful awareness through enabling applications of many

simple ‘actors’

• State is (usually) an optional or minimal component of design

• Majority of design time is spent thinking about the external APIs for your modules

Like it or not, the framework you choose also affects how you think about your

application design.

How you naturally decompose a problem will lead to what you like to design with

ni.com

Norm’s Solution

Demonstrated with a TLB’ implementation of the CLD sample

exam – Automated Teller Machine

@15-15

ni.com

Norm’s ATM solution

Norm’s Solution

ni.com

Norm’s ATM solution

Norm’s Solution

Top Level ATM Prime Account Manager Module

[Triggers] [Triggers]

ni.com

DNatt’s Counterpoint

Demonstrated with a DQMH implementation of the ATM, which

has exactly one state variable in the entire codebase

@30-10

ni.com

Chewbacca

ni.com

“What if… ?”

DNatt’s Counterpoint

ni.com

DNatt’s ATM solution

Three Modules

State Data

• ATM module

• Waiting Task (enum)

• Timer module

• None

• Account Manager module

• None

DNatt’s Counterpoint

Image created with AntiDoc
vipm.io/package/wovalab_lib_antidoc

A given DQMH module often has very little

(if any) local state.

ni.com

Norm’s Counter-Counterpoint

Demonstrated with the never-before-seen DQMH’ prime design!

@40-10

ni.com

Norm’s DQMH ‘solution’

The Brain at the Heart of DQMH

Implications

• Break the link between request and ‘do’

• Request Event Caught -> enQ
request -> State digests -> Q’s
up actions

• Leverage tools to create/mange DQMH

Event

• Such Worth

• How to structure to minimize type

casting?

• Maintain QMH familiarity

Norm’s Counter-Counterpoint

ni.com

Conclusion

What have we learned?

@50-5

ni.com

Norm’s takeaways

• You might be wasting your time

debugging ~Omar Mussa

• If you're catching yourself dealing with

your QMH doing the wrong thing at the

wrong time, you likely have a flow

problem

• Recognizing that your program likely

has different modes of operation is the

first step to healing

•Hi my name is 'Norm' and I screwed up
my flow

• Explicitly declaring the mode of your

program so that you can more smarter

do right things be gooder

• All QMH without state awareness and

flow control are vulnerable to issues

 during development (maybe)

 during maintenance/upgrade
(definitely)

• Even AF is a QMH at the end of the day

so it's just as vulnerable

And even harder to debug!

Conclusion

ni.com

DNatt’s takeaways

• Forget everything Norm just said

• Small modules that can be individually tested make managing trigger response less of a big deal

▪ This comes for free with DQMH

• Whitespace is overrated

• Modifying DQMH templates only makes sense if the functionality of the scripting tools is preserved

• In my 7+ years of application development with DQMH, there have been very few times where

trigger response/state management was required

▪ And when it was, a helper loop with a "simple state machine" tended to do the job

Conclusion

ni.com

Norm’s counter-takeaways

Body Copy

Conclusion

DNatt Definition of Adequate Whitespace ^^^

ni.com

Norm’s counter-takeaways

 Why settle for force

fitting your flow control

just to appease the

DQMH gods when you

can create a program

that gracefully

describes and enforces

what you want it to do.

Conclusion

• The best of both worlds is possible

PrimeTest (MBalla / DPress)

HampelSoft (Joerg Hampel)

DQMH Prime

WIP

ni.com

DNatt’s counter-counter-takeaways
• History of DQMH

• API Testers

• Events vs. Queues

• Built-in Scripting Tools

• VIPM install

• Make fun of whitespace again

• Number of users

• Enum vs. String

• Inaccurate screenshot

• No UML diagram

• Error generation

• Error propagation

• Versioning

• File I/O

• Politically-oriented hashtag

Conclusion

• “State Machine” naming

• Learning paths

• Certification badge

• VI Analyzer

• Queue API

• Use of LV Classes

• Async vs. Sync calls

• VI Server

• Event lifetimes

• Stopping two loops

• New LabVIEW version

• Get Pizza

• Execution Highlighting

• General Error Handler VI

• Right-click plugins

• LV Speak & Spell

• Virtual Machines

• Quick Drop plugins

• Easter Egg

• Spaghetti Code

• Wire Z-plane Order

• Happy Halloween

• Headless VI Server

• This list is nonsense

• G Web Development

• NI QMH

• Actor Framework

• Messenger

• GDevCon NA

• End of list

ni.com

Thanks for attending!

ni.com

Presentation Goal

To improve the way we think about and design our QMH-based

LabVIEW programs in two ways:

1. Understand Norm’s ever-present complaint about traditional QMH

program flow and how it might affect your applications

2. Understand the QMH Prime(’) design (even if you don’t use it)

3. If all else fails…to entertain

