Building Distributed

LabVIEW and @MAQ.

How to build a distributed system
without a large team.

Maciej Kolosko, Partner Composed
Systems, CLA , CLED

Presentation overview

* Microservices — how distributed cloud systems are built

* What is @MQ and where is it available to use

* Demo of connecting Current Gen and NXG with @MQ

« How @MQ can be used in the kind of systems we build with LabVIEW
« Stable vs Unstable networks

* Wrap up followed by Q&A

Aspects of distributed systems

« Componentization via Services

Segregation oriented to Business Capabilities rather than Technlology
Decentralized governance

Decentralized data management

Design for failure

Smart endpoints and dumb pipes

Componentization via Services

Organizing vs capabilities

{g n f’“ p | User Interface
h S A

g (i W l% Business
‘i Logic

Database

Organizing vs Business Capabilities

Building for failure

« Randomly shuts down your
services and VM'’s in your
deployment structure

* https://qgithub.com/Netflix/ch
aosmonkey

()

il

https://github.com/Netflix/chaosmonkey

The ESB : The smart pipe.

» § Doposl \?; AR -
THE ESB F BUT COMPLEXITY 1S
IS 50 COMPLICATED TOO ABSTRACT FOR |2 FINTSH 1T 51X
THAT FAILURE 15 YOU TO MANAGE, SO 60 (JEEKS SOONER
ASSURED INSTEAD YOU LUTLL |2
' SPRAY MY ENERGY |#
NTO THE VORTEX !
OF FATLURE.
§ :
- B
5 :
Q

SMART ENDPOINTS DUMB PIPES:
What is zero @MQ?

* It's not another message queue.

* OMQ — not a daemon not a server. It is a library.

* It does not bring any additional dependencies with it.
* It is a very lightweight socket system.

* It was built for financial markets, to handle a high volume of
messages.

@MQ AVAILIBLITY

* Language bindings which use the C++ implementation are available for
C#, JAVA, C, LabVIEW , Python , F#, Lua, PHP and many ... many more
http://zeromq.org/bindings: start

* Java and C# stack supported as direct implementations.

» Supported operating systems include :
* Windows
e Unix / Linux
* 10S, Android
* WxWorks

http://zeromq.org/bindings:_start

@MQ binding for current gen

 Three layers of libraries

¢ Promlnent Classes Interface Vis (zeromg.lvlib) LabWIEW
e Context

* Thread safe

: Manages |/O threads Adapter (vzmoB4/32.dll) C++

» Socket

- Manages a single
endpoints

* Not thread safe

@ME Lib (libzmogb4

Examples : connecting current gen and NXG
using @MQ

« Example of connecting LabVIEW current GEN and NXG though @MQ and
the use of REQ / REP pattern

* Overview of the example code, and brief discussion about the process of
porting a portion of the Zero MQ binding from current gen to next gen.

|—_”|StE.1'.[iDr‘I-CDr‘ItrDIF.’C'5. |: - - - .G.t.mtrl-::.IPC

|s aware ofthe

Top Level Sequence status. Manages movemeant of robots
using the Motion Director,
Can be deployed on a different hased on requests from LabVIEW

PC than the Robot control PC

LR3I #

@amao
LabWVIEW [LabVIEW Robot
Station Contral l Caontrol Program Caontrol C++
Ethernet/ @MQ Ethernet

Manages vision inspection o

And conducts detection

Based on still images
eMo @
Al

g

Messages @?MQ

LakWIEW Obj ' LakVIEW Ohj

{"Method Mame""SetManipulationDirector,
LabWIEW Ohj "Parameters":
{"Director File Path""C:Mgitikineteks-robot-controMResourcetWMaotionDirectoriDemao3.xml"}}

Zero MQ Communication scheme

=] Client 1 =] Server

* http://zeromqg.or~

* http://www.gnu.
REQ - 7 > REP
SUB [- PUB
. : | S— | F
i RS i L L SUB i SUB
_____ L L____i____J
E Client 2

REQ -+

http://zeromq.org/
http://www.gnu.org/licenses/lgpl.html

Synchronous vs Asynchronous operation

PUB : socket enveloping

Frame 1 Key Message envelope

REQ I] Frame 2 Data Actual message body

Client requests and gets o response with confirmadtion
+hot process has been Kiekied off

+o listen I +he reauested operation completed

www.websequencediagrams.com

STABLE vs UNSTABLE D

. g = Jhatis
unsta e de5|q

* Bind vs Conne
* How does {™ <. pence our design.

Node Presence / Discovery

* Video demo of an unstable network. Go to http://labviewcraft.com to
watch.

http://labviewcraft.com/

@MQ Types of transport

req.bind(" tcp://127.0.8.1:80")
req.bind(' inproc://some.pipe")

req.bind('ipc:/fanother.pipe')

ﬂ*"\‘““m

INPROC IPC

Zero MQ Termination

* It's not straightforward at the beginning.
* http://zeromq.org/whitepapers:0mqg-termination

http://zeromq.org/whitepapers:0mq-termination

Questions

* Thank you!

e Email
maciej.kolosko@composedsystems.
com

« Web https://composed.io

« See Examples / Demo Videos
http://labviewcraft.com upload
coming soon!

mailto:maciej.kolosko@composedsystems.com
https://composed.io/
http://labviewcraft.com/

