
Building Distributed systems with 
LabVIEW and ØMQ.

How to build a distributed system 
without a large team.

Maciej Kolosko, Partner Composed 
Systems, CLA , CLED



Presentation overview

• Microservices – how distributed cloud systems are built

• What is ØMQ and where is it available to use

• Demo of connecting Current Gen and NXG with ØMQ

• How ØMQ can be used in the kind of systems we build with LabVIEW

• Stable vs Unstable networks

• Wrap up followed by Q&A



Aspects of distributed systems

• Componentization via Services

• Segregation oriented to Business Capabilities rather than Technlology

• Decentralized governance

• Decentralized data management

• Design for failure

• Smart endpoints and dumb pipes



Componentization via Services



Organizing vs capabilities

User Interface

Business 
Logic

Database



Organizing vs Business Capabilities
Orders

Catalog

Shipping



Building for failure

• Randomly shuts down your 
services and VM’s in your 
deployment structure

• https://github.com/Netflix/ch
aosmonkey

https://github.com/Netflix/chaosmonkey


The ESB : The smart pipe.



SMART ENDPOINTS DUMB PIPES: 
What is zero ØMQ?
• It’s not another message queue.

• ØMQ – not a daemon not a server. It is a library.

• It does not bring any additional dependencies with it.

• It is a very lightweight socket system.

• It was built for financial markets, to handle a high volume of 
messages.



ØMQ AVAILIBLITY

• Language bindings which use the C++ implementation are available for 
C#, JAVA, C , LabVIEW , Python , F#, Lua, PHP and many … many more
http://zeromq.org/bindings:_start

• Java and C# stack supported as direct implementations.

• Supported operating systems include : 

• Windows

• Unix / Linux

• iOS, Android

• WxWorks

http://zeromq.org/bindings:_start


ØMQ binding for current gen

• Three layers of libraries

• Prominent Classes
• Context

• Thread safe
• Manages I/O threads

• Socket
• Manages a single 

endpoints
• Not thread safe



Examples : connecting current gen and NXG 
using ØMQ
• Example of connecting LabVIEW current GEN and NXG though ØMQ and 

the use of REQ / REP pattern

• Overview of the example code, and brief discussion about the process of 
porting a portion of the Zero MQ binding from current gen to next gen.



Real world system example

• Nodes distributed on a LAN

• Some are powered by LabVIEW current gen

• Some are C++

• Some are .NET / C#



Messages ØMQ



Zero MQ Communication scheme

• http://zeromq.org

• http://www.gnu.org/licenses/lgpl.html

http://zeromq.org/
http://www.gnu.org/licenses/lgpl.html


Synchronous vs Asynchronous operation

PUB : socket enveloping



STABLE vs UNSTABLE Design

• What is stable design and what is 
unstable design.

• Bind vs Connect

• How does that influence our design.

• Another demo : 

• Demonstrate the use of Proxy to 
create a stable endpoint and 
connect to unstable endpoints.



Node Presence / Discovery

• Video demo of an unstable network. Go to http://labviewcraft.com to 
watch.

http://labviewcraft.com/


ØMQ Types of transport



Zero MQ Termination

• It’s not straightforward at the beginning.

• http://zeromq.org/whitepapers:0mq-termination

http://zeromq.org/whitepapers:0mq-termination


Questions

• Thank you!

• Email 
maciej.kolosko@composedsystems.
com

• Web https://composed.io

• See Examples / Demo Videos 
http://labviewcraft.com upload 
coming soon!

mailto:maciej.kolosko@composedsystems.com
https://composed.io/
http://labviewcraft.com/

