
Separation Anxiety
Designing for Change

1

Jon McBee

CLA, CLED, CTD, CPI, LabVIEW Champion, Scrum Master

What concept do you value most within the

context of software development?

2

Problem Decomposition

3

Separation Anxiety

4

Working code is not enough
- Robert C. Martin (Uncle Bob)

5

Working code is not enough

6

• Move fast and break things

• Get something working (often
before a deadline)

• Hero from managements point
of view

• Technical Debt

Tactical Programming

• Problem decomposition

• Separation of concerns

• Emphasis on continuous
investment in the infrastructure
of the system

• Technical Debt

Strategic Programming

Tactical Debt Strategic Debt

Technical Debt Quadrants

7

We don’t have
time for design

What’s
separation of

concerns?

Let’s deploy
and gather

more
information

Now we know
how we should

have done it

Reckless Prudent

Deliberate

Accidental

Technical Debt Quadrants

8

We don’t have
time for design

What’s
layering?

Let’s deploy
and gather

more
information

Now we know
how we should

have done it

Reckless Prudent

Deliberate

Accidental
Strategic Debt

Irresponsible

Incompetent

Tactical Debt

Any tactical tornados in the room?

9

Tactical

10

1. It is more important to reduce the effort of maintenance than it is to reduce

the effort of implementation

2. The effort of maintenance is proportional to the complexity of the system

11

“Separation of concerns… even if not
perfectly possible is yet the only
available technique for effective

ordering of one’s thoughts”

12

Separation of Concerns

- Edsgar Dijkstra

• The goal is not to reduce a system into its
indivisible parts, but to organize the system into
elements of non-repeating sets of cohesive
responsibilities

• The overall goal of Separation of Concerns is to
establish a well-organized system where each
part fulfills a meaningful and intuitive role while
maximizing its ability to adapt to change

13

Separation of Concerns

1. Lack of duplication and singularity of purpose
of components makes the system easier to
maintain

2. The system as a whole becomes more stable
as a byproduct of increased maintainability

3. Strategies required to ensure each component
only concerns itself with a single set of
cohesive responsibilities result in natural
extension points

4. The decoupling that results from the
cohesiveness of components makes
components reusable

14

Value of Separation of Concerns

Separation of Concerns Strategy

15

Presentation Layer

Business Layer

Resource Layer

Utilities
(Aspects)

Extending Concerns

16

Presentation Layer

Business Layer

Resource Layer
Extension or
Substitution

Dependencies Between Concerns

17

Presentation Layer

Business Layer

Resource Layer

B
u

s

AbstractionAbstractionAbstraction

API

ComponentComponentComponent

API Design

18

Component

Interface: everything that must be
known to users (Cost)

Functionality: fulfills promises of
interface but hidden from users
(Benefit)

Shallow Component

Deep Component

API Design

19

We don’t have
time for design

What’s
layering?

Let’s deploy
and gather

more
information

Pointless

Narrow Broad

Deep

Shallow

Usable

Useless

Beautiful

Cost

Benefit

Benefit

Cost

Breadth

D
ep

th

Plug GPM
20

Separation of Concerns Strategy

21

Presentation Layer

Business Layer

Resource Layer

Difficult to change?

MVC, MVVM, MVA

HAL, MAL,
Dependency Injection

Let me tell you a story…

22

A Use Case

23

An Example
https://gpackage.io/packages/@cs/carwash
https://bitbucket.org/composedsystems/composed-car-wash

https://gpackage.io/packages/@cs/carwash
https://bitbucket.org/composedsystems/composed-car-wash

• Is it fair to expect everyone to write clean code?

• Is this technology stack too hard to learn?

• Is it possible to apply these ideas if you have an
established code base?

• Other questions you may have?

24

Am I Being Reasonable?

A Philosophy of Software Design

25

Separation Anxiety

• Applying the principle of separation of concerns often

involves advanced concepts and constructs which bring a

certain level of complexity to the application beyond that of

merely addressing the domain concerns of the application

• These techniques often lead inexperienced or more tactical-

minded developers to characterize such designs as “overly-

complex” or “over-engineered”

• Development teams should certainly not seek complexity for

complexity’s sake, but the notion that avoiding advanced

design concepts equates to avoiding complexity should be

dispelled

QUESTION & ANSWER

27

Thank You
Stay In Touch With Us

67 West Street, Suite 401

Brooklyn, Ny 1122

000 000 0000

info@composedsystems.com

Www.composedsystems.com

28

